Maulana Azad National Urdu University

Two-year M.Sc. Program

Courses

(Effective from Academic Year 2023-25)

M. Sc. (Physics) Syllabus under CBCS Scheme

SEMESTER-I						
Course Code	Course Name	L	Т	Р	С	
MSPH101CCT	Classical Mechanics	3	1	0	4	
MSPH102CCT	Mathematical Physics	3	1	0	4	
MSPH103CCT	Quantum Mechanics	3	1	0	4	
MSPH104CCT	Electronics-I	3	1	0	4	
MSPH150CCP	General Physics Laboratory-I	0	0	6	3	
MSPH151CCP	Electronics Laboratory-I	0	0	6	3	
	Total	12	4	12	22	

L=Lecture, T=Tutorial, P=Practical, C= Credit

Course Coo	le Course Name	L	Т	Р	С
MSPH101CC	T CLASSICAL MECHANICS	3	1	0	4
Course Description	The course will cover the Newtonian, Lagrangian, and mechanics and its applications.	l Hamil	tonian f	formulati	ions of
Course Objectives	The objective is to provide concepts and problem-solving a and Hamiltonian. Students will be exposed to derive Newtonian, Lagrangian motion.			C	C
Course Outcomes	The successful students will be able to apply the Newto equations of motion.	onian, L	agrange.	, and Ha	amilton

Module	Content of Course	Hours
	Classical Mechanics	
1	Newtonian formalism: Inertial frames and Galilean transforms-Non-inertial frames- pseudo forces, rotational frames, rotational transforms and conservation theorems. Description of rotations in terms of Euler angles-Euler's equations of motion for a rigid body. Minkowski space, space-time diagrams, world point and world line- relativistic motion and Lorentz transforms as rotations in four-space, four velocity, energy-momentum vectors with few examples.	15
2	Lagrangian formalism: Constraints, generalized coordinates, Principle of virtual work, Lagrange's equations and applications, D'Alembert's principle, Lagrangian equations of motion for plane and spherical pendulums, L-C circuit; velocity dependent potentials-Lagrangian for a charged particle in electromagnetic field, Euler's equations from Lagrange equations. Hamilton's principle, Lagrange's equations from Hamilton's principle.	15
3	Hamiltonian formalism: The Principle of Least Action-Applications of Hamilton's equations motion of a particle in a central force field, projectile motion of a body. Cyclic coordinates and conservation theorems, Canonical coordinates and canonical transformations, Conditions for a transformation to be canonical, generating functions, Lagrange and Poisson brackets. Hamilton's equations in Poisson bracket from Hamilton-Jacobi theory.	15
4	Mechanics of continuous systems:Analysis of the free vibrations of a linear triatomic molecule, Eigen value equation- Principal axis transformation- Frequencies and normal coordinates Lagrangian formulation for continuous systems, Hamiltonian formulation.	15
Textbook	H. Goldstein, C. P. Poole and J. Safko, Classical Mechanics, 3rd Edition, Pearson (2	012).
Ref. Book	L. Landau and E. Lifshitz, Mechanics, 3rd edition, Butterworth-Heinemann (1982).	

Course Code	e Course Name	L	Т	Р	С
MSPH102CC	CT MATHEMATICAL PHYSICS		1	0	4
Course Description	The course will cover linear differential with variable of Laguerre Differential equations, Fourier and Laplace tra	-			
Course	The objective is to familiarize with mathematical metho	ds for solvi	ng advan	ced prob	olems
Objectives	in physics. Students will be exposed to mathematical skills to solve	problems i	n both fu	ndamen	tal and

	Students will be exposed to mathematical skills to solve problems in both fundamental and
	advanced physics.
Course	The successful students will be able to apply mathematical skills in designing and solving
Outcomes	problems.

Module	Content of Course	Hours
	Mathematical Physics	
1	Linear differential equations with variable coefficients:	15
	Legendre's Differential equation: Power series solution, Legendre functions of	
	the first and second kind, Generating function, Rodrigue's formula, Orthogonal	
	properties, Recurrence relations.	
	Bessel's Differential Equation: Power series solution, Bessel functions of first	
	and second kind, Generating function, Orthogonal properties, Recurrence	
	relations. Beta and Gamma functions, properties and their relations.	
2	Hermite Differential Equation: Power series solution, Hermite polynomials,	15
	Generating Function, Orthogonality, Recurrence relations, Rodrigues formula.	
	Laguerre Differential equation: Power series solution, Generating Function,	
	Rodrigue's formula, Recurrence relations, Orthogonal properties, Integral	
	representation of Laguerre differential equations.	
3	Fourier Transform: Infinite Fourier sine and cosine transforms, Properties of	15
	Fourier transforms, Derivative of Fourier transform, Fourier transform of a	
	derivative, Fourier sine and cosine transform of derivatives, Finite Fourier	
	transforms, Applications of Fourier Transforms.	
	Laplace Transform: Properties of Laplace transforms, Derivative of Laplace	
	transform-Laplace transform of a derivative, Laplace transform of periodic	
	functions, Inverse Laplace transform and its properties, Inverse Laplace theorem,	
	Convolution theorem.	
4	Matrice: Eigen values, Eigen vectors, Characteristic equation of a matrix, Cayley	15
	Hamilton theorem, Types of matrices, symmetric and skew symmetric and	
	Hermitian matrices, Unitary and symmetry transformations	
	Tensors: Order and rank of the tensors, transformation laws of covariant, contra-	
	variant and mixed tensors,	
	Properties of tensors: Addition, subtraction and multiplication of tensors, Outer	
	and inner products, contraction of tensors and quotient law.	
Textbook	George B. Arfken, Hans J. Weber and Frank E. Harris, Mathematical Methods for Ph	ivsicists
	7th Edition, Academic Press (2012).	.,5101515
Dof Dool		lar Pr
Ref. Book	Mary L. Boas, <i>Mathematical Methods in the Physical Sciences</i> , 3rd Edition, John Wi	ney æ
	Sons (2005).	

Course Code	Course Name	L	Т	Р	С		
MSPH103CC	T QUANTUM MECHANICS	3	1	0	4		
Course	The course will cover the basic concepts of quantum med	hanics.					
Description							
Course	The objective is to introduce the fundamental principles	of quantum	n mechan	ics.			
Objectives	Students will be exposed to						
	1. formulation and postulates of quantum mechanics.						
	2. applications of quantum mechanics and spherically sy	nmetric po	otentials.				
	3. symmetry in quantum mechanics and identical particle	S					
	4. approximation methods, scattering theory and relativistic quantum mechanics.						
Course	The successful students will be able to know the theoretical concepts of quantum mechanics				chanics		
Outcomes	and to apply its principles to physical problems.						

Module	Content of Course	Hours
	Quantum Mechanics	1
1	Formalism: Linear vector spaces, Hilbert space, Dimension and basis of a vector	15
	space, Square-integrable functions, Dirac notation, Operators, Commutators,	
	Representation in discrete and continuous bases.	
	Postulates of Quantum Mechanics: Wave function and its relation to the state	
	vector, Probabilistic interpretation of the wave function and its normalization,	
	Probability current density and continuity equation, Superposition principle,	
	Observables and operators, Expectation values, measurement and uncertainty	
	relations, Time-dependent and Time-independent Schrödinger equations,	
	Acceptable solutions of Schrödinger equation.	
2	Applications of Quantum Mechanics: Finite and infinite square well potentials,	15
	Tunnelling through a barrier, Linear harmonic oscillator, 3D-box potential,	
	3D- harmonic oscillator.	
	Spherically Symmetric Potentials: Central potential, Orbital angular	
	momentum, Angular momentum algebra, Eigenvalues and eigenfunctions of	
	orbital angular momentum, Spin angular momentum, Stern-Gerlach experiment,	
	Spin algebra, Pauli spin operators and matrices, Addition of angular momenta,	
	Clebsch-Gordon coefficients, Rigid rotator, Hydrogen atom.	
3	Symmetry in Quantum Mechanics: Symmetry operations and unitary	15
	transformations, Conservation laws; Continuous symmetries: Space and time	
	translations, rotation; Discrete symmetries: Space inversion, Time reversal and	
	charge conjugation, Symmetry and degeneracy.	
	Identical particles: Identicality versus indistinguishability, Identical particles in	
	classical and quantum mechanics, Exchange symmetry and degeneracy,	
	Symmetric and anti-symmetric wave functions, Inclusion/Incorporation of spin,	
	Slater determinants, Symmetrization postulate, Pauli exclusion principle, Bose	
	and Fermi-statistics.	
4	Approximation methods: Time-independent Approximation Methods: Time	15
	independent (Non-degenerate and degenerate) perturbation theory and its	
	applications, Stark effects, Spin-orbit coupling and fine structure, Zeeman effect,	
	Variational method and its applications, WKB approximation and its applications.	

Time-dependent Approximation Methods: Time dependent perturbation theory,
Fermi's Golden rule, Selection rules, Beta decay, Semi classical theory of
interaction of atoms with radiation.
Scattering Theory: Differential and total scattering cross-sections, Scattering
amplitude of spinless particles, Phase shifts, Partial waves analysis (for elastic and
inelastic scatterings), Born approximation (for low and high energies).
Relativistic quantum mechanics: Lorentz invariance, Klein-Gordon Equation,
Dirac equations, Positive and negative energy states, Significance of negative
energy states and antiparticles.

Textbook	Nouredine Zettili, Quantum Mechanics Concepts and Applications, John Wiley & Sons Inc.					
	(2022).					
	B. H. Bransden and C. J. Joachain, <i>Quantum Mechanics</i> , Pearson Education (2004).					
Reference	L. I. Schiff, <i>Quantum Mechanics</i> , McGraw Hill McGraw-Hill Book Company (1968).					
Book	J. J. Sakurai, Advanced Quantum Mechanics, Pearson Education (1967).					

Course Coo	le Course Name	L	Т	Р	С
MSPH104CC	Electronics-I	3	1	0	4
Course	The course will cover the basics of electronics, electro	nic devices, a	nd their a	pplicatio	ons.
Description					
Course	The objective is to build a circuit from individual com	The objective is to build a circuit from individual components.			
Objectives	Students will be exposed to designing new circuits using electronic components.				
Course Outcomes	The successful students will be able to assemble analog and digital components to make new circuit.		ike		

Module	Content of Course	Hours
	ELECTRONICS-I	
1	 Regulated Power Supply: Basic Principle of regulated power supply: Zener regulator and its working, Transistorized Series regulator, fixed IC voltage regulators using IC 78XX and 79XX, variable IC regulators with LM317 and LM338. Feedback in Amplifiers: The concept of feedback, Positive and Negative feedback, feedback gain, Advantages of Negative feedback in amplifiers, Emitter follower, Darlington pair. Oscillators: Barkhausen Criterion, RC oscillators: Phase shift Oscillator, Wein Bridge Oscillator, LC Oscillators: Hartley and Colpitts Oscillators, Crystal Oscillator. 	15
2	 Operational Amplifiers: Characteristics of Ideal operational Amplifier, Block diagram of an IC operational Amplifier, Emitter coupled differential amplifier and its transfer characteristics. Analysis of inverting amplifier, Non-inverting amplifier, Integrator, Differentiator, summing amplifier, Difference amplifier, Comparator, Logarithmic amplifier and exponential amplifier, Square wave, Rectangular wave and Triangular wave generators. Timer IC 555: Working of IC 555, Astable and Mono-stable Multi-vibrator with IC 555. 	15
3	 Logic Circuits: Min terms and Max terms simplification of Boolean equations- sum of products and product of sums- Karnaugh Maps (upto 4 variables), Data selector/ Multiplexer, Decoder/ De-multiplexer Flip-Flops: RS, D, JK and M/S JK flip flops with their truth tables, timing diagrams. Registers: Types of Registers, Serial in Serial out, Serial in Parallel out, Parallel in Serial out and Parallel in Parallel out Registers. Counters: Asynchronous and Synchronous Counters, Modulus N Counter, Ripple Counter, Decade Counter using Flip-Flops and IC's 7490, 7493 	15
4	Microprocessor: Introduction to Microprocessors, Architecture of 8085 microprocessor, Instruction set Data transfer instructions, Arithmetic Logic and Branch operations, Interrupts, Simple Assembly language programming: 8-bit addition, 8-bit subtraction, 8-bit multiplication, Ascending and descending arrangement of given numbers.	15

	McGraw Hill Education (2014).
	R. S. Gaonkar, Microprocessor architecture, programming and applications with the 8085,
	6th Edition, Penram International Publishers (2013).
Ref. Book	J. Millman, C. Halkias and C. D. Parikh, <i>Integrated Electronics</i> - Analog and Digital Circuit
	and Systems, 2nd Edition, McGraw Hill Education (2017).

Course Co	de	Course Name	L	Т	P	C	
MSPH150	ССР	General Physics Laboratory-I	0	0	6	3	
Expt. No.	List of Experiments						
1	Determina	ation of Stefan's constant					
2	Character	istics of a Thermistor					
3	Specific H	leat of Graphite					
4	Linear Ex	pansion of the given Material					
5	Ultrasonic	velocity of a liquid by Interferometer					
6	Ultrasonic	e Velocity of water/ kerosene by Debye-Sea	ar's Meth	od			
7	Viscosity	of Water by oscillating disc method					
8	Viscosity	of castor oil by oscillating disc method					
9	Young's N	Aodulus Y of the material of the spiral spri	ng				
10	Rigidity N	Rigidity Modulus of the material of the spiral spring					
11	Determination of adiabatic compressibility of organic liquids using Ultrasonic interferometer						
12	Thermal d	liffusivity of the given material					

Course Co	ode	Course Name	L	Т	Р	C
MSPH151	ICCP	Electronics Laboratory-I (Analog Electronics)	0	0	6	3
Expt. No.		List of Experi	ments			
1	RC-Coup	led Amplifier (Single - Stage)				
2	Square W	Vave Generator (IC-741)				
3	Wein-Bri	dge Oscillator (IC-741)				
4	Astable M	Iultivibrator (IC-555)				
5	Regulated	Power Supply (IC-78 XX)				
6	Voltage C	Controlled Oscillator (IC-555)				
7	Integrator	· (IC-741)				
8	Schmitt T	rigger/Zero Cross Detector				
9	RC Phase	Shift Oscillator (IC-741)				
10	UJT (Rela	axation Ocillator)				

	SEMESTER-II				
Course Code	Course Name	L	Т	Р	С
MSPH201CCT	Electromagnetic Theory	3	1	0	4
MSPH202CCT	Statistical Mechanics	3	1	0	4
MSPH203CCT	Solid State Physics	3	1	0	4
MSPH204CCT	Electronics-II	3	1	0	4
MSPH250CCP	General Physics Laboratory-II	0	0	6	3
MSPH251CCP	Electronics Laboratory-II	0	0	6	3
	Total	12	4	12	22

Course Code	Course Name	L	Т	Р	С		
MSPH201CCT	ELECTROMAGNETIC THEORY	3	1	0	4		
Course	rse The course will cover the basic concepts of electromagnetic theory.						
Description							
Course	The objective is to introduce the fundamental principles of electromagnetic theory.						
Objectives	Students will be exposed to						
	1. concepts of fields and forces in electrodynamics and m	1. concepts of fields and forces in electrodynamics and magnetodynamics,					
	2. basic understanding of electromagnetic waves, guided	electron	nagnetic	waves,			
	electromagnetic radiation, and relativistic electrodynamics and their applications.						
Course	The successful students will be able to explain and solve problems based on classical and						
Outcomes	relativistic electrodynamics.						

Module	Content of Course	Hours
	Electromagnetic Theory	
1	 Electrostatics: Electric field, Electric potential, Gauss's law and its applications, Electric dipoles, Electric quadrupole and multipoles, Energy density in electrostatic fields. Electric fields in Matter: Dielectrics and Conductor, Polarization, Bound charges, Electric displacement, Electrostatic boundary conditions. Linear dielectrics. Electrostatic Boundary-Value Problems: Laplace and Poisson equations, 	15
	Uniqueness Theorem, Green Theorem, Method of Images, Multiple expansions.	
2	 Magnetostatics: Lorentz force law, Magnetic force on current element, Continuity equation, Biot-Savart law, Ampere's law, Magnetic scalar and vector potentials, multipole expansion of the vector potential. Magnetic fields in Matter: Magnetization, Bound currents, Magnetic field intensity, Energy in a magnetostatic field Magnetostatic boundary conditions. Magnetic materials. Electrodynamics: Faraday's law of induction, Displacement current, Continuity equation for time-varying fields, Generalized Ampere's law, Maxwell's equations, differential and integral forms, physical significance of Maxwell's equations. Maxwell's equations in free space and linear isotropic media. Boundary conditions on the fields at interfaces. Scalar and vector potentials, Gauge invariance. Lorentz gauge and Coulomb gauge 	15
3	Electromagnetic Waves: Electromagnetic waves in free space, dielectrics, and conductors. Skin depth. Poynting's theorem, electromagnetic energy, momentum, and radiation pressure. Polarization of electromagnetic waves. Coherence. Reflection and refraction at dielectric interfaces. Fresnel's law, Total internal reflection, and Brewster's angle.	15
4	 Guided Electromagnetic waves: Transmission lines, Wave guides, Propagation modes in wave guides, resonant modes in cavities. Electromagnetic Radiation: Radiation from a moving point charge and oscillating electric and magnetic dipoles. Retarded potentials. Lienard-Wiechert potential. Dynamics of charged particles in static and uniform electromagnetic field. Dispersion relations in Plasma. Relativistic Electrodynamics: Lorentz transformations, four vectors, Transformation of electric and magnetic fields, Invariance of Maxwell's equations 	15
Textbook	David J. Griffiths, Introduction to Electrodynamics, Cambridge University Press (202	23)
Ref. Book	J. D. Jackson, <i>Classical Electrodynamics</i> , John Wiley (Asia) (1999).	

Course Code	Course Name	L	Т	Р	C		
MSPH202CCT	STATISTICAL MECHANICS	3	1	0	4		
Course	The course will cover the basic concepts of statistical mechanics.						
Description							
Course	The objective is to introduce the fundamental principles of Statistical Mechanics.						
Objectives	Students will be exposed to						
	1. the concept of temperature and how to calculate it.						
	2. give an exposure to various statistical ensembles and t	heir app	lications	in physic	cs.		
	3. get familiar with the foundations and applications of quantum statistics.						
Course	The successful students will be able to explain and solve	problem	ns based	on classi	cal and		
Outcomes	relativistic electrodynamics.						

Module	Content of Course	Hours
	Statistical Mechanics	
1	Equilibrium ThermodynamicsReview of Laws of thermodynamics and thermodynamic potentials – Microstatesand Macrostates of classical and quantum systems – Phase space – μ-space and Γ-space – Density of states – Expression for density of states in energy space andmomentum space – Introduction to Ensembles – Ensemble average – Principle ofa priori probability – Thermodynamic probability – Boltzmann entropy relation-Liouville's theorem – Equilibrium solutions.	15
2	Microcanonical and Canonical EnsemblesIntroduction – Microcanonical distribution – Microcanonical Average – Entropy(S) – Derivation of S = k log W – Entropy of a Perfect Gas in a MicrocanonicalEnsemble – Gibbs Paradox – Thermodynamic Quantities in MicrocanonicalEnsemble. Introduction – Canonical Distribution – Canonical Average –Canonical Ensemble Partition Function – Importance of the Canonical EnsemblePartition Function – Maxwell Velocity Distribution – Maxwell EnergyDistribution – Most Probable Velocity – Mean Kinetic Energy – ThermodynamicFunction – Classical System in a Canonical Ensembles – Ideal Gas –Microcanonical versus Canonical Ensembles.	15
3	Grand Canonical EnsembleIntroduction – Grand Canonical Distribution – Grand Canonical Average – GrandCanonical Partition Function – Quantum Statistics – Thermodynamic Functions inGrand Canonical Ensemble – Classical System – Ideal Gas in Grand CanonicalEnsemble – Density and Energy Fluctuations – Comparison of VariousEnsembles.	15
4	Quantum Statistics Need for Quantum Statistics – Difference between classical and quantum statistics – Identical Particles – Bosons and Fermions – Symmetric and anti-symmetric wave functions – Difference between Bose-Einstein and Fermi-Dirac statistics – Calculating the partition function for Bosons and Fermions – Derivation of Bose-Einstein and Fermi-Dirac distributions – Definition of thermal wavelength – Bose-Einstein Condensation - Applications – Black body radiation (Bose system) – Fermi gas at low temperature – Fermi momentum.	15
Textbook	F. Reif, Fundamental of Statistical and Thermal Physics, McGraw-Hill, USA, 1965 K. Huang, Statistical Mechanics, Wiley, India, 2 nd Edition, 2011.	
Ref. Book	 R. K. Pathria and P. D. Beale, Statistical Mechanics, Academic Press, USA, 2011. L. D. Landau and E. M. Lifshitz, Statistical Physics, UK, 3rd Edition, 1980. 	

Course Code	Course Name	L	Т	Р	C		
MSPH203CCT	SOLID STATE PHYSICS	3	1	0	4		
Course Description							
Course Objectives	magnetic properties of matter. Students will be exposed to formulate basic models for e	The objective is to provide an understanding of structure, thermal, electrical and magnetic properties of matter. Students will be exposed to formulate basic models for electrons and lattice vibrations, the relationship between band structure and the electrical/optical properties of a material.					
Course Outcomes	The successful students will be able to explain and solve	e problen	ns of soli	id state p	hysics.		

Module	Content of Course	Hours
	Solid State Physics	•
1	Crystal Structure Bravais lattices – primitive vectors, primitive unit cell, conventional unit cell, Wigner-Seitz cell, Symmetry operations and classification of 2- and 3- dimensional Bravais lattices; Crystal Structures: basis, crystal class, point group- Space group (information only) – Common crystal structures: NaCl, CsCI, ZnS, and Diamond - Packing density - HCP and CCP; Reciprocal lattice and Brillouin zone; Atomic scattering factor and crystal structure factor of BCC, FCC, Diamond and polyatomic lattices – Explanation of experimental methods for crystal diffraction (Laue, Rotation and Powder)	15
2	Lattice Vibrations and Thermal PropertiesVibration of crystals with monoatomic lattices and diatomic lattices, acoustical and optical modes, long wavelength limits - Derivation of force constants;Quantization of lattice vibrations –Phonon momentum – Inelastic scattering of neutrons by phonons; Normal modes and phonons; Density of modes in one- dimension and three- dimension – Lattice heat capacity – Einstein model – Debye model of the lattice heat capacity – Anharmonic effects in crystals – Thermal conductivity – Thermal Resistivity - Umklapp process.	15
3	Free Electron Theory, Energy Bands and Semiconductor CrystalsEnergy levels and density of orbitals – Fermi-Dirac distribution – Free electrongas in three- dimensions - Heat capacity of the electron gas – Electricalconductivity and Ohm's law - Motion in magnetic fields –Hall effect – Thermalconductivity of metals – Wiedemann-Franz law – Nearly free electron model –Origin of the energy band gap –Bloch functions – Kronig –Penny model;Classification of metal, semiconductor and insulator - Semiconductors – Bandgap– Properties of holes - effective mass in semiconductors - Intrinsic carrierconcentration.	15
4	Magnetic Properties of SolidsOrigin of magnetism; Langevin theory of diamagnetism and Paramagnetism;Quantum theory of paramagnetism; Weiss theory - Hund's rules - Quenching oforbital angular momentum; Cooling by adiabatic demagnetization; Pauliparamagnetism; Ferromagnetism: Curie-Weiss law, Temperature dependence ofsaturation magnetization – Heisenberg's exchange interaction – Magnons -Ferromagnetic domains – Origin of domains – Coercive force and hysteresis;Ferrimagnetism and antiferromagnetism.	15
Textbook	C. Kittel, Introduction to Solid State Physics, 8th Edition (Wiley Eastern, New Delhi,	2012)
Ref. Book	A. J. Dekker, Solid State Physics, (Macmillan India, 2000).	

Course Code	Course Name	L	Т	Р	C
MSPH202CCT	ELECTRONICS-II	3	1	0	4
Course					
Description					
Course					
Objectives					
Course					
Outcomes					
Module	Content of Course				Hours
	Electronics-II				
1					15
2					15
3					15
4					
Textbook					
Ref. Book					

Course Co	de	Course Name	L	Т	Р	С		
MSPH250	ССР	General Physics Laboratory-II	0	0	6	3		
Expt. No.		List of Experime	nts					
1	Deter	rmination of Cauchy's Constants						
2	Deter	rmination of wavelength of Na light using a diffra	action gra	ating				
3	Doub	le refraction						
4	Band	ed spectrum						
5	Newt	ton's rings - determination of Poisson's ratio						
6	Fresn	nel Biprism - determination of wavelength of Na	light					
7	Malu	s law						
8	Mich	elson's interferometer						
9	Singl	e slit diffraction						
10	Doub	le slit diffraction						
11	Deter	rmination of wavelength of laser						
12	Thick	Thickness of thin film using Fresnel biprism or Michelson interferometer						
13	Fibre	Fibre Optics: Characteristics of LED and Phototransistor						
14	Fibre	optics: determination of numerical aperture						

Course Co	le	Course Name	L	Т	Р	С
MSPH251	CCP Ele	ctronics Laboratory-II	0	0	6	3
	((Digital Electronics)				
Expt. No.	List of Experiments					
1	Construction and Verification of i) Logic Gates/Circuits (Using Nand Gates 7400) ii) AND, OR, NOT, NOR, NAND, EX-OR					
2	Half-Adder & Full Adder					
3	Flip-Flops: D-Type, T-Type, Jk- Flip Flop (IC-7496)					
4	Peaking Amplifier					
5	Logarithmic Amplifier					
6	Colpitts oscillator					

	SEMESTER-III				
Course Code	Course Name	L	Т	Р	С
MSPH301DCT	Atomic and Molecular Physics	3	1	0	4
MSPH302DCT	Nuclear and Particle Physics	3	1	0	4
MSPH301DET	Computational Physics	3	1	0	4
MSPHXXXXX	Physics of Renewable Energy Systems (GEC-I)	3	1	0	4
MSPH301DEP	Computational Physics Lab	0	0	6	3
MSPH301DCP	Advanced Physics Laboratory-I (Atomic and Nuclear Physics Lab)	0	0	6	3
	Total	12	4	12	22

Course Code	Course Name	L	Т	Р	С
MSPH301DCT	Atomic and Molecular Physics	3	1	0	4

Course Description	The course will cover the basic ideas of atomic and molecular physics.
Course Objectives	The objective is to introduce the fundamental principles of atomic and molecular physics.
Course Outcomes	The successful students will be able to apply quantum mechanics and extract information from one electron and many-electrons atoms and molecules.

Module	Content of Course	Hours
1	One-electron atoms: Schrodinger equation for one-electron atoms, Hydrogen	15
	atom spectrum.	
	Interaction of one electron atoms with electromagnetic radiation:	
	Transition rates, The dipole approximation, The Einstein coefficients,	
	Selection rules and spectrum of one electron atoms, Line intensities and the	
	lifetimes of the excited states, Line shapes and widths.	
2	One-electron atoms- fine structure and hyperfine structure: Fine structure	15
	of hydrogenic atoms, Relativistic corrections to Kinetic energy, Spin-orbit	
	interaction energy, Darwin term, Lamb shift, Hyperfine structure and isotopic	
	shift.	
	Interaction of one electron atoms with external electric and magnetic	
	fields: Zeeman, Paschen-Bach and Stark effects.	
3	Many electron atoms: Central field approximation, Thomas-Fermi model of	15
	the atom, Hartree- Fock method and the self-consistent field, L-S coupling	
	and j-j coupling, Introduction to the Density functional theory.	
	Interaction of many electron atoms with electromagnetic radiation and	
	with static electric and magnetic fields: Many electron atoms in an	
	electromagnetic field, spectra of the alkalis.	
4	Molecular structure: Born-Oppenheimer approximation, Electronic structure	15
	of diatomic molecule, The rotation and vibration of diatomic molecules,	
	Nuclear spin.	
	Molecular spectra: Rotational spectra of diatomic molecules, Vibrational-	
	rotational spectra of diatomic molecules, Electronic spectra of diatomic	
	molecules, Raman spectra of diatomic molecules The Franck-Condon	
	principle.	
	Applications of atomic and molecular physics: Electron spin resonance.	
	Nuclear magnetic resonance, and chemical shift.	

Textbook	B.H. Bransden and C.J. Joachain, <i>Physics of atoms and molecules</i> , Pearson, 2003.
Reference	Peter Atkins and Ronald Friedman, Molecular Quantum Mechanics, Oxford University
Book	Press, 2012.

Course Code	Course Name	L	Т	Р	С
MSPH302DCT	Nuclear and Particle Physics	3	1	0	4

Course	The course will cover the basic concepts of nuclear and particle physics.
Description	
Course	The objective is to introduce the fundamental principles of nuclear and particle
Objectives	physics.
Course	The successful students will be able to know the theoretical concepts of nuclear forces,
Outcomes	models, decay, and reactions and the interaction of high-energy particles.

Module	Content of Course	Hours
1	Nuclear properties: Nuclear size, nuclear radius, charge distribution, mass,	15
	binding energy, stability and abundance of nuclei, angular momentum	
	(spin), magnetic dipole moment, electric quadrupole moment, parity and	
	isospin.	
	Nuclear forces: Deuteron (ground and excited states), spin dependence of	
	nuclear forces, nucleon-nucleon scattering, form of nucleon-nucleon	
	potential, charge symmetry and charge independence of nuclear forces,	
	exchange nature of nuclear forces, Yukawa's theory.	
2	Nuclear models: Liquid drop model, semi-empirical mass formula, shell	15
	model, magic numbers, and collective model.	
	Nuclear decay: Radioactive decay, alpha, beta, and gamma decay, and their	
	selection rules, Gamow theory, Fermi theory, neutrino and antineutrino.	
	Nuclear Reactions: Nuclear reactions, reaction mechanism, direct and	
	compound nuclear reaction mechanisms, compound nucleus, nuclear fission	
	and fusion, nuclear reactor.	
3	Particle Physics:	15
	Elementary Particle: Fundamental forces/interaction, Elementary particles	
	and their classifications,	
	symmetries and conservation laws: Continuous space time symmetries,	
	conservation laws of momentum, energy, angular momentum, Lorentz	
	invariance, Discrete Symmetries, Parity, Charge conjugation and Time	
	reversal, quantum numbers, Application of symmetry arguments to particle	
	reactions, Gell Mann Nishijima formula.	
4	The Standard Model: Parity non-conservation of weak interaction, Wu's	15
	experiment, an elementary idea of electroweak unification, Higgs boson and	
	origin of mass, quark model, the concept of color charge, discrete	
	symmetries, properties of quarks and leptons, gauge symmetry in	
	electrodynamics, particle interactions and Feynman diagrams.	
	Relativistic kinematics.	

Textbook	W. E. Burcham and M. Jobes, Nuclear and particle Physics, Prentice Hall (1994)
Reference	K.S. Krane, Introductory Nuclear Physics, John Wiley (2008)
Book	D. J. Griffiths, Introduction to Elementary Particles, John Wiley & Sons Inc. (2008)

Course Code	Course Name	L	Т	Р	С
MSPH301DET	Computational Physics (SEC-I)	3	1	0	4

Course	The course will cover the basic ideas of scientific programming, numerical and
Description	simulation techniques .
Course	The objective is to incorporate modern computational skills into the scientific problem
Objectives	solving paradigm.
Course	The successful students will become familiar with commonly used computational
Outcomes	techniques to solve problems in physics.

Module	Content of Course	Hours			
1	Computer organization, hardware, software. Scientific programming in	15			
	FORTRAN and/or C, C++. Introduction to Matlab				
2	Numerical Techniques I	15			
	Roots of functions: Bisection method, Newton-Raphson method, Secant				
	method, fixed-point iteration, applications;				
	Linear equations: Gauss and Gauss-Jordan elimination methods, Gauss-				
	Seidel iteration method, LU decomposition;				
	Eigenvalue Problem: Power method, Inverse power method;				
	Numerical interpolation, extrapolation and fitting of data: Polynomial				
	interpolation and extrapolation, cubic spline interpolation, fitting data to a				
	straight line, examples from experimental data fitting.				
3	Numerical Techniques II	15			
	Numerical differentiation: forward, backward and centred difference				
	formulae;				
	Numerical Integration: Trapezoidal, Simpson and Gaussian quadrature				
	methods,				
	Solutions of ODE: Initial value problems, Euler's method, second and				
	fourth order Runge-Kutta methods;				
	Boundary value problems: finite difference method, applications.				
4	Simulation Techniques: Monte Carlo methods, molecular dynamics,	15			
	density functional theory, simulation methods for the Ising model and				
	atomic fluids, simulation methods for quantum-mechanical problems, time-				
	dependent Schrödinger equation. Langevin dynamics simulation.				

Textbook	K. E. Atkinson, Numerical Analysis, John Wiley (Asia) (2004)
	J.M. Thijssen, Computational Physics, Cambridge University Press (2007)
Reference	S. S. Sastry, Introductory Methods of Numerical Analysis, PHI Learning (2012)
Book	

Course Code	Course Name	L	Т	Р	С
MSPH30XXXX	Physics of Renewable Energy Systems	3	1	0	4
	(GE-I)				

Course	The course will cover the basics of various renewable energy resources and energy
Description	generation using different methods.
Course	The objective is to introduce the fundamentals of renewable energy resources and their
Objectives	applications.
Course	The successful students will be able to understand the various types of energy sources
Outcomes	and their usage.

Module	Content of Course	Hours		
1	Energy Scenario and Solar Energy:	15		
	Global and Indian energy scenario and energy policy, Commercial and			
	noncommercial forms of energy, Fossil Fuels, Renewable sources, Impact			
	of energy systems on environment, Need for use of new and renewable			
	energy sources, Solar thermal and solar photovoltaic energy			
2	Wind and Geothermal Energy:	15		
	Wind Energy: Basics- Global circulation, Forces influencing wind-			
	pressure gradient force and Coriolis force, Local and regional wind systems,			
	Geothermal Energy: Geothermal tidal and wave energy, Geothermal			
	regions, geothermal sources, Geothermal energy conversion technologies			
3	Hydrogen Energy and Fuel cells:	15		
	Hydrogen Energy-production and storage, Production processes: Thermo			
	chemical, Water splitting, Gasification, Pyrolysis methods. Electro-			
	chemical, Electrolysis, Photo electro chemical. General storage methods,			
	Compressed storage, Zeolites, Metal hydride storage, Chemical hydride			
	storage and cryogenic storage.			
	Fuel cells- Thermodynamics and performance of fuel Cells, its working,			
	construction, classifications and applications.			
4	Biomass and Nuclear Energy:	15		
	Biomass Energy: Biomass energy and application, Techniques for biomass			
	assessment, Thermochemical conversion of biomass, Mini/micro hydro			
	power: classification of hydropower schemes,			
	Nuclear Energy: Fission, Fusion, Different type of nuclear reactors,			
	Nuclear waste disposal and environment measures.			

Textbook	J. Twidell and T. Weir, Renewable Energy Resources, Taylor and Francis, USA, (2006)
Reference	Aldo Vieira da Rosa, Fundamentals of Renewable Energy Processes, Elsevier
Book	Academic Press, UK (2005)

Course Code	Course Name	L	Т	Р	С
MSPH301DEP	COMPUTATIONAL PHYSICS LAB	0	0	6	3

Course	The course will cover the applications of computational techniques.		
Description			
Course	The objective is to teach computational techniques and apply these methods to solve		
Objectives	problems in physics.		
Course	The successful students will be able to write the numerical algorithms and		
Outcomes	implementing these algorithms through a computer Programme.		

Expt.	List of Experiments	Hours
No.		
1	Write MATLAB script for the numerical solution of equation of motion for a	
	simple pendulum using the Euler method.	
2	Write MATLAB script for the numerical solution of equation of motion for a	
	simple pendulum using the Runge Kutta method.	
3	Write a MATLAB script for the numerical solution of damped pendulum	
4	Write a MATLAB script to simulate the planetary motion of earth around the	
	sun.	
5	Write a MATLAB script to simulate the motion of two coupled harmonic	
	oscillators.	
6	Write a MATLAB script to simulate the growth and decay of current in RL	
	circuit containing (a) DC source and (b) AC using Runge Kutta method, and to	
	draw graphs between current and time in each case.	
7	Write MATLAB script to simulate the decay of radioactive nucleus.	
8	Write a MATLAB script to simulate the random walk.	
9	Write a MATLAB script to simulate the Ising model of a ferromagnet.	
10	Write a MATLAB script to solve time dependent Schrodinger equation in 1D	
	for particle in a box problem.	

Course Code	Course Name	L	Т	Р	С
MSPH301DCP	ADVANCED PHYSICS LABORATORY-I	0	0	6	3
	(Atomic and Nuclear Physics Laboratory)				

Expt. No.	List of Experiments	Hours
1	Recording of Hydrogen Spectra	
2	Zeeman effect	
3	Gamma Ray Spectrometer (Energy resolved)	
4	Alpha particle spectrometer (Energy resolved)	
5	Radiation Counter for Alpha and Beta Particle	
	(ZnSe for Alpha and Plastic scintillation counter for beta particle)	
6	Radiation Counter for Gamma and Beta Particle	
7	Finding the Plateau region of GM Tube	
8	Alpha particle counter (only for alpha particle)	
9	Compton Scattering	

SEMESTER-IV						
Course Code	Course Name	L	Т	Р	С	
MSPH40XXXX	Modern Optics	3	1	0	4	
MSPH40XXXX	Experimental Techniques in Physics	3	1	0	4	
MSPH40XXXX	Environmental Physics (GEC-II)	3	1	0	4	
MSPH40XXXX	Seminar and Project	3	0	0	3	
MSPH40XXXX	Special Paper	3	1	0	4	
MSPH40XXXX	Special Paper Lab	0	0	6	3	
	Total	12	0	12	22	

Course Code	Course Name	L	Т	Р	С
MSPH40XXXX	MODERN OPTICS	3	1	0	4

Course	The course will cover the basic concepts of modern optics.
Description	
Course	The objective is to provide comprehensive knowledge of optical science and its
Objectives	applications.
Course	The successful students will become familiar with the working principles and
Outcomes	applications optics.

Module	Content of Course	Hours
1	Geometrical Optics: Fermat's Principle, Ray equation and its solutions,	10
	and applications.	
	Electromagnetic theory of optics: Maxwell's equations and propagation of	
	electromagnetic waves, reflection and refraction, total internal reflection,	
	and evanescent waves.	
2	Polarization: Polarization, various states of polarization and their analysis.	10
	Anisotropic media, plane waves in anisotropic media, birefringence,	
	uniaxial crystals, some polarization devices.	
	Interference: Concept of Coherence, Interference by division of wavefront	
	and division of amplitude, Stoke's relations, Non-reflecting films,	
	Michelson interferometer; Fabry-Perot interferometer and etalon.	
3	Diffraction: Fraunhofer diffraction: Single slit, circular aperture; limit of	15
	resolution. Diffraction grating, Resolving power. Fresnel diffraction: Half-	
	period zones and the zone plate. Diffraction of a Gaussian beam.	
	Fourier Optics: Basics of Fourier transformation, spatial frequency and	
	transmittance function, Fourier transform by diffraction and by lens, spatial-	
	frequency filtering, and some applications; Holographic principles, on-axis	
	and off-axis holograms, types of holograms and some applications.	
4	Lasers: Laser principles, interaction of radiation and matter, Einstein	15
	coefficients, condition for amplification. Optical resonators, Condition for	
	laser oscillation. Longitudinal and transverse modes of a laser. Some Laser	
	Systems, and applications	
	Fiber optics: Light propagation in optical fibers, fiber communication,	
	attenuation and dispersion, single and multi-mode fibers, fiber amplifiers	
	and lasers, fiber optic sensors.	
5	Nonlinear Optics: Nonlinear optical media, second order nonlinear optics,	10
	third order nonlinear optics anisotropic nonlinear media, optical parametric	
	amplification and oscillation, optical phase conjugation, dispersive	
	nonlinear media.	

Textbook	Eugene Hecht, Optics, Pearson, 2021.
Reference	Bahaa E. A. Saleh and Malvin Carl Teich, Fundamentals of Photonics, John Wiley &
Book	Sons, 2019.

Course Code	Course Name	L	Т	Р	С
MSPH40XXXX	EXPERIMENTAL TECHNIQUES	3	1	0	4
	IN PHYSICS				

Course	The course will cover the fundamental concepts of experimental techniques utilized in	
Description	the fields of applied physics.	
Course	The objective is to acquire knowledge about different experimental techniques.	
Objectives		
Course	The successful students will understand and learn about different experimental	
Outcomes	facilities.	

Module	Content of Course	Hours
1	Vacuum Generation and Measurement Techniques: Introduction to	15
	vacuum, gas law; Rotary vane pump, Turbomolecular pump, Cryopump;	
	Pirani gauge, Penning gauge.	
	Fundamentals of Synthesis and Fabrication of Materials: Classification	
	of powders; Synthesis of powders: Sol-gel, Hydrothermal, Combustion	
	techniques; Synthesis of thin films: Spin coating, Dip coating, Thermal and	
	electron beam evaporation, Pulsed laser deposition; General concept of	
	lithography, Photolithography, Electron beam lithography; Clean room.	
2	Introduction to Basic Measurements and Characterization Techniques:	20
	Study of Crystal Structure: X-ray diffraction (XRD), Transmission	
	Electron diffraction (TED), <i>Microscopic Techniques:</i> Optical Microscopes	
	(Bright field, Confocal, Super-resolution), Scanning Electron Microscope,	
	Transmission Electron Microscope, Scanning Probe Microscopes.	
	Spectroscopic Techniques: UV-Vis, Fluorescence, IR and FTIR, Photo-	
	Acoustic, Laser Induced Breakdown, Raman, Twyman-Green	
	interferometer as a special case of Michelson Interferometer for testing of	
	optical components, Lateral shearing interferometers and its applications	
	such as testing. Collimation of a lens, laser speckle techniques and its	
	applications.	
3	Surface and Compositional Analysis Methods: EDAX, XPS.	10
	Dielectric Characterization: Complex impedance spectroscopy, Analysis	
	of Nyquist plot, Various RC network schemes, Analysis of CV curves, ac	
	conductivity, Charging-discharging cycle of capacitors	
4	Electrochemical Measurements: Different potentiometric /galvanometric	15
	techniques. Methods for studying electrical, magnetic, thermal properties.	
	Low Temperature Methods: Temperature measurement and control;	
	Cryostats and cooling methods.	
	Accelerator and Fusion Techniques:	
	Pelletron, Linear accelerator, Cyclotron, Synchrotron, Tokamac;	
	Applications in High energy physics, Materials science and Particle therapy.	

Textbook	A.Roth, Vacuum Technology, Oxford University Press, 1998.
	M. Ohring, The material science of thin films, Academic Press, 1992
	Guozhong Cao, Nanostructures and Nanomaterials - Synthesis, Properties and
	Applications, World Scientific, 2004

Course Code	Course Name	L	Т	Р	С
MSPH40XXXX	ENVIRONMENTAL PHYSICS	3	1	0	4
	(GEC-II)				

Course	The course will cover the fundamental concepts of environmental Physics.	
Description		
Course	The objective is to understand the broad scope of problems to which the principles of	
Objectives	environmental physics can be applied.	
Course	The successful students will understand the concepts of energy transformations and	
Outcomes	microclimatology of radiation and its effect on living beings.	

Module	Content of Course	Hours
Ι	The Scope of environmental physics, properties of gases and liquids	10
II	Transport of heat, mass, and momentum, transport of radiant energy, radiation environment	15
III	Microclimatology of Radiation I: Radiative Properties of Natural Materials, Radiation Interception by Solid Structures	20
IV	Microclimatology of Radiation II: Interception by Plant Canopies and Animal Coats	15

Textbook	John L. Monteith and Mike H. Unsworth, <i>Principles of Environmental Physics</i> , Academic Press 2013.
Reference	Egbert Boeker and Rienk Van Grondelle, Environmental Physics, John Wiley & Sons,
Book	2019.

Course Code	Course Name	L	Т	Р	С
MSPH40XXXX	SEMINAR AND PROJECT	3	0	0	3

Course	The dissertation topics will be based on special papers or elective papers and topics of
Description	current interest. A departmental committee will distribute the topics according to the
	skill and merit of the students.
Course Objectives	The objective is to make students familiar with the approach to conducting literature survey, capable of independent thinking, and learn basic techniques for carrying out research.
Course	The successful students will be able to understand the basic of literature review
Outcomes	techniques used for performing research, analyze the results and tabulate them in a proper manner and how to write and dissertation, making presentation and viva voce.

Module	Content of Course	Hours
Guidelines	 Projects would be allotted to students which have to be carried out and completed in M.Sc. (3rd Sem). A list of projects will be finalized and announced by the Department. The students will have an option to select the project in their field of interest. The project will comprise of the following: a. Collection of data, procurement and fabrication of experimental set up and writing of computer programs if needed. b. Writing a dissertation or project report. This will be submitted by the M.Sc. (Final) students in the first week of May. c. Giving a preliminary seminar before the final presentation for the purpose of internal assessment whose weight age would be 25%. The final evaluation of the project work completed will be done by external and internal examiners appointed by the Board of Studies on the basis of an oral presentation and the submitted Project-Report. The weight age of the final evaluation would be 75%. 	
Evaluation	The evaluation will be done by an external examiner. External examiner will award the grades based on quality of research work done recorded in dissertation and presentation made by student.	

Course Code	Course Name	L	Т	Р	С
MSPH40XXXX	MATERIAL SCIENCE	3	1	0	4

Course	The course will cover the basic ideas of materials and their properties.
Description	
Course	The objective is to give a comprehensive knowledge about the materials.
Objectives	
Course	The successful students will understand the various properties and applications of
Outcomes	materials.

Module	Content of Course	Hours
1	Introduction: Material and its classifications, Electron Energy Bands,	15
	and Chemical Bonds.	
	Materials Processing: Functionality driven material; Extraction, synthesis,	
	processing, and characterization of materials.	
2	Structural Materials: Introduction to Alloys, Ceramics, Polymers and	15
	Composites; Preparation, Processing and Applications; Elastic and Plastic	
	deformation, Residual stress, Hardness, Fracture, Fatigue, strengthening and	
	forming, fracture resistance, fatigue life, creep resistance.	
	Optical Materials: Introduction to optical materials; Interaction of light	
	with electrons in materials; Applications as dielectric coatings, electro-	
	optical devices, optical recording, optical communications.	
3	Magnetic Materials: Properties and processing of magnetic materials;	15
	Field, Induction, Magnetization and Hysteresis; Applications as Permanent	
	magnets, Magnetic recording and sensing.	
	Electronic Materials: Si as material for microelectronics and photovoltaic,	
	preparation, processing and applications; III-V and II-VI semiconductors	
	and optoelectronic applications; Thermoelectric materials, figure of merit,	
	thermoelectric generators and refrigerators; Superconducting Materials and	
	properties, applications including magnets, magneto-encephalography,	
	Josephson junction, SQUID; Conducting Polymers, synthesis and	
	applications; Ferroelectric materials, piezoelectricity and applications;	
	Shape memory alloys and applications.	
4	Energy storage materials: Batteries, principles of electrochemistry;	15
	Primary and secondary (rechargeable) batteries and materials; Fuels cells;	
	Ultracapacitors.	
	Biomaterials: Requirements like absence of toxicity, corrosion resistance,	
	biocompatibility; Metal, ceramic and polymer biomaterials; bio-resorbable	
	and bio-erodible polymers; Applications as implants, and prosthesis.	

Textbook	Traugott Fischer, Materials Science for Engineering Students, Academic Press 2009.
Reference Book	J.W. Morris, Jr., The Structure and Properties of Materials, McGraw Hill,2005
DOOK	

Course Code	Course Name	L	Т	Р	С
MSPH40XXXX	GRAVITATION AND	3	1	0	4
	COSMOLOGY				

Course	The course will cover the basic principles of gravitation and cosmology.
Description	
Course	The objective is to introduce the concepts of gravitation and cosmology.
Objectives	
Course	The Successful students will be able to grasp various physical aspects of gravity and
Outcomes	cosmology.

Module	Content of Course	Hours
1	Preliminary discussions: Review of special theory of relativity, vector and	15
	tensor, particle dynamics, electrodynamics, energy momentum tensor,	
	relativistic hydrodynamics.	
	Principle of equivalence: Statement of the principle, gravitational forces,	
	geodesic-affine connection, Newtonian limit.	
2	Tensor analysis: Tensor algebra, tensor density, transformation of affine	15
	connection, covariant differentiation, gradient, divergence, curl, parallel	
	transport.	
	Curvature: curvature tensor, Bianchi identity, Ricci tensor, curvature	
	scalar, Killing vectors and symmetries.	
3	Einstein's field equation: Derivation of field equation, Schwarzschild	15
	solution, Birkhoff's theorem, geodesic equation in Schwarzschild space	
	time, Precession of perihelion of mercury, bending of light rays,	
	gravitational red shift.	
	Stellar equilibrium and collapse: Differential equation for stellar	
	structure, White dwarfs, neutron stars, comoving coordinates,	
	Schwarzschild blackholes, collapse to a blackholes.	
4	Gravitational radiation: Propagation, detection, and generation of	15
	gravitational waves, energy carried away by gravitational waves.	
	Universe: Friedmann-Robertson-Walker solution, our Universe.	
	Cosmology: Models of the universe and the cosmological principle,	
	Cosmological metrics, Types of universe, Robertson-Walker universes, Big	
	Bang, Dark energy.	

Textbook	Steven Weinberg, Gravitation and Cosmology: Principles and Applications of the
	General Theory of Relativity, John Wiley & Sons, 2013.
Reference	Bernard Schutz, A First Course in General Relativity, Cambridge University Press,
Book	2009.