Course Code Course Title					Lecture				
BTCS102BST		Engineering Physi	CS	L	Т	Р		Semester: I	
Version:]	Date of Approval:		3	1	0			
Scheme of Instruction Scheme o				e of	f Examination				
No. of Periods	•••	60 Hrs.		Maximum Score : 100				100	
Periods/ Week	:	4		Internal Evaluation :			:	30	
Credits	:	4		End Semester :			:	70	
Instruction Mode		Lecture		E	xam Du	ration	:	3 Hrs.	

Course Objectives:

1. To acquire competency in the field of engineering with adaptability to new development in science and technology. 2

				electricity			

Course Outcomes:

- Students will be familiar with the principles of lasers, types of lasers and applications ·
 Various terms related to properties of materials such as, permeability, polarization, etc. ·
- 3. Some of the basic laws related to quantum mechanics as well as magnetic and dielectric properties of materials ·
- 4. Simple quantum mechanics calculations.

Detailed C	ontents:
Unit: 1	Diffraction: Introduction to interference and example; concept of diffraction, Fraunhofer and Fresnel diffraction, Fraunhofer diffraction at single slit, double slit, and multiple slits; diffraction grating, characteristics of diffraction grating and its applications. Polarisation: Introduction, polarisation by reflection, polarisation by double refraction, scattering of light, circular and elliptical polarisation, optical activity.
Unit: 2	Fibre Optics: Introduction, optical fibre as a dielectric wave guide: total internal reflection, numerical aperture and various fibre parameters, losses associated with optical fibres, step and graded index fibres, application of optical fibres. Lasers: Introduction to interaction of radiation with matter, principles and working of laser: population inversion, pumping, various modes, threshold population inversion, types of lasers: solid state, semiconductor, gas; application of lasers.
Unit: 3	Electromagnetism: Laws of electrostatics, electric current and the continuity equation, laws of magnetism. Ampere's Faraday's laws. Maxwell's equations. Polarisation, permeability and dielectric constant, polar and non-polar dielectrics, internal fields in a solid, Clausius-Mossotti equation, applications of dielectrics.
Unit: 4	Magnetic Properties of Materials: Magnetisation, permeability and susceptibility, classification of magnetic materials, ferromagnetism, magnetic domains and hysteresis, applications. Introduction to quantum physics, black body radiation, explanation using the photon concept, photoelectric effect, Compton effect.
Unit: 5	Quantum Mechanics: de Broglie hypothesis, wave-particle duality, Born's interpretation of the wave function, verification of matter waves, uncertainty principle, Schrodinger wave equation, particle in box, quantum harmonic oscillator, hydrogen atom.
	ion and Evaluation Pattern: It include both internal evaluation (30 marks) comprising two class sessional
-	ssignments/ quiz/ seminar presentation etc. and external evaluation (70 marks) which is mainly end
semester e	examination.

Te	Text Books:							
1	A. Ghatak, "Optics"							
2	A. Beiser, "Concepts of Modern Physics"							
Rei	Reference Books:							
1	Resnick and Halliday : Physics							
3	A.J. Decker (Macmillan): Solid State Physics							

Course Code		Course Title		Lecture						
BTCS150BST		Engineering Phys	ics lab	L	Т	Р		Semester: I		
Version:]	Date of Approval:		0	0	4				
Scheme of Instruction				Scheme of Examination						
No. of Periods	:	30 Hrs.		Maximum Score : 100						
Periods/ Week	:	4		Internal Evaluation : 5				50		
Credits	:	2	End Semester : 50				50			
Instruction Mode	:	Practical		E	xam Du	ration	:	3 Hrs.		

3. Prerequisite(s): It is expected that the students have done Engineering Physics Course (BTCS102BST)

Course Objectives:

- 1. To acquire competency in the field of engineering.
- 2. Demonstrate to new development in physics laboratory by successfully completing the experiments.
- 3. Understand and learn basic theory and principles of science.

Course Outcomes:

- 5. Learn basic properties and characteristics of light, Diffraction, Newton's rings, interference in thin films and polarisation.
- 6. Understand the working principle of LASER, optical fibres etc
- 7. Understand the Characteristics of diodes, thermistors, photocells and concept of energy gap in semiconductors

Detailed Contents:

- 1. Determination of the radius of Curvature of Plano convex lens by forming Newton's rings.
- 2. Determination of the Numerical aperture of the given optical fibre by using Laser diode.
- 3. Study the current Voltage (V-I) Characteristics of the given P-N-Junction diode.
- 4. Determination of the plank's constant using photocell.
- 5. Determination of the Physical Characteristics of the given Thermistor.
- 6. Determination of the specific rotation of liquid by using polarimeter
- 7. Determination of the Energy gap of given semiconductor
- 8. Determination of the wavelength of a given laser source using diffraction grating

Examination and Evaluation Pattern: It include both internal evaluation (50 marks) comprising two class sessional exams/ assignments/ quiz/ seminar presentation etc. and external evaluation (50 marks) which is mainly end semester examination

Tex	Text Books:						
1	Harnam Singh PS Hemne," Practical Physics"						
2	S.K Gupta ,"Engineering physics practical"						
Ref	Reference Books:						
1	A. Ghatak, "Optics"						
2	Resnick and Halliday : Physics						
3	3 A. Beiser, "Concepts of Modern Physics"						
4	A.J. Decker (Macmillan): Solid State Physics						