Learning Outcomes based Curriculum Framework (LOCF)

FOR

MASTER OF TECHNOLOGY

(COMPUTER SCIENCE) M.TECH. (CS) (W. E. F. 2020-21)

Based on
AICTE Model Curriculum
for Postgraduate Degree Courses

DEPARTMENT OF COMPUTER SCIENCE & I.T. MAULANA AZAD NATIONAL URDU UNIVERSITY 2020

Program Summary

Course Type	Abbreviation	Credits
Program Core	PC	16
Program Elective	PE	20
Research Methodology & IPR	RMIPR	2
Generic Elective	GE	8
Laboratory	LAB	8
Mini Project with Seminar	MPS	2
Dissertation	DISS	24
Total Credits:		80

Semester - I

		Course	Marks				
Course Code	Course Title	Course Type	Internal Assessment	Semester Exam	Total	L-T-P	Credits
MTCS111PCT	Advanced Algorithm	PC	30	70	100	4-0-0	4
MTCS112PCT	Advanced Computer Architecture	PC	30	70	100	4-0-0	4
MTCS111RMT	Research Methodology & IPR	RMIPR	15	35	50	2-0-0	2
MTCS11XPET	Program Elective-1	PE	30	70	100	4-0-0	4
MTCS12XPET	Program Elective-2	PE	30	70	100	4-0-0	4
PGCS13XGET	Generic Elective-1	AC	30	70	100	4-0-0	4
MTCS160PCP	S160PCP Lab- I Advanced Algorithm Lab		50	50	100	0-0-4	2
MTCS16XPEP	Lab – II (Based on Elective-I) LAB 50 50		100	0-0-4	2		
	Tot	800	22-0-8	26			

Semester - II

		Course Marks							
Course Code	Course Title	Type	Internal Assessment	Semester Exam	Total	L-T-P	Credits		
MTCS211PCT	Machine Learning	PC	30	70	100	4-0-0	4		
MTCS212PCT	Internet of Things	PC	30	70	100	4-0-0	4		
MTCS21XPET	Program Elective-3	PE	30	70	100	4-0-0	4		
MTCS22XPET	Program Elective -4	PE	30	70	100	4-0-0	4		
PGCS23XGET	Generic Elective-2	AC	30	70	100	4-0-0	4		
MTCS260PCP	Lab – III-ML Lab	LAB	50	50	100	0-0-4	2		
MTCS261PCP	Lab – IV -loT Lab	LAB	50	50	100	0-0-4	2		
MTCS270PCP	Mini Project with MPS		50	50	100	0-0-4	2		
	Total								

^{*}Students are encouraged to go to Industrial Training/Internship for at least 2-3 months during semester break. They need to make a prototype model in the allotted areas on the recommendations of the supervisor.

Semester - III

		Course	N	<i>l</i> larks			Credits	
Course Code	Course Title	Type	Internal Assessment	Semester Exam	Total	L-T-P		
MTCS31XPET	Program Elective -5	PE	30	70	100	4-0-0	4	
MTCS370PCP	S370PCP Dissertation-I DISS 210 490		700	0-0-20	10			
	800	4-0-20	14					

Semester – IV

		Course	N	<i>l</i> larks			
Course Code	Course Title	Type	Internal Assessment	Semester Exam	Total	L-T-P	Credits
MTCS470PCP	Dissertation-II	DISS	240	560	800	0-0-28	14
	Tota	al			800	0-0-28	80

L-T-P stands for number of contact hours as Lecture-Tutorial-Practical in a week.

PROGRAM ELECTIVES (PE) & GENERIC ELECTIVES (GE)

	Ser	nest	ter – 1	st	
Course Code	Course Title		Course	Code	Course Title
Progra	m Elective – I with Lab			Prog	gram Elective – II
MTCS111PET	Advanced Network Securi	ty	MTCS121PET		Intelligent Systems
MTCS112PET	Distributed Database		MTCS12	2PET	Augmented & Virtual Reality
MTCS113PET	Data Science		MTCS12	3PET	Soft Computing
MTCS114PET	Semantics Web		MTCS12	4PET	Digital Forensics
Program Elec					
MTCS160PEP		ty Lab			
MTCS161PEP	Distributed Database Lab				
MTCS162PEP					
MTCS163PEP	Semantics Web Lab				
G	Seneric Elective-1				
PGCS131GET	English for Research Paper W	/riting			
PGCS132GET	Disaster Management				
PGCS133GET	Sanskrit for Technical Knowle	dge			
PGCS134GET	Value Education				
	Ser	nest	er – 2'	nd	
	am Elective – III				n Elective – IV
MTCS211PET	57	MTCS	S221PET		ced Operating System
MTCS212PET	Compilers for High Performance Computing	MTCS	S222PET	Digital	Image Processing
MTCS213PET	Distributed Computing	MTCS	S223PET	Advand Networ	ced Wireless & Mobile
MTCS214PET	Natural Language Processing	MTCS	S224PET		Applications & Services
MTCS215PET		MTCS	S225PET	Graphi	cs Processing Unit Computing
	eric Elective-2				
PGCS231GET	Constitution of India				
PGCS232GET	Pedagogy Studies]			
PGCS233GET	Stress Management by Yoga				
PGCS234GET	Personality Development through Life Enlightenment Skills				

	Program Elective – V
MTCS311PET	Deep Learning
MTCS312PET	Secure Software Design & Enterprise Computing
MTCS313PET	Wireless Access Technologies
MTCS314PET	Data Preparation & Analysis
MTCS315PET	Optimization Techniques

Semester-1

Course Code		Course Title			Lectur			
MTCS111PCT		Advanced Algorithm		L	T	P		Semester: I
Version:]	Date of Approval:		4	0	0		
Scheme of Instruction	n		Scheme of Exan			Examination		
No. of Periods	:	60 Hrs.		Ma	aximum	Score	:	100
Periods/ Week	:	4		Interr	ıal Eval	uation	:	30
Credits	:	4	End Semester : 70					70
Instruction Mode	:	Lecture	Exam Duration : 3				3 Hrs.	
Carrera Olain ations		·	•	•				

- 1. The course is intended to provide the foundations of the practical implementation and usage of Algorithms.
- 2. Students evolve into a competent programmer capable of designing and analyzing implementations of algorithms and data structures for different kinds of problems.
- 3. To expose the student to the algorithm analysis techniques and to the classification of problems into complexity classes like P and NP.

Course Outcomes:

By the end of the course, the students will be able to:

- 1. design and analyze programming problem statements.
- 2. understand the necessary mathematical abstraction to solve problems.
- 3. come up with analysis of efficiency and proofs of correctness.
- 4. comprehend and select algorithm design approaches in a problem specific manner.

1. COIII	prenena ana select algorithm aesign approaches in a problem specific mainler.							
Detailed	Contents:							
Unit: 1	Introduction to algorithm, Growth of functions, Master's Theorem, Sorting: Quick Sort,							
Ullit: 1	Heap Sort, Shaker Sort, and Counting Sort.							
	Greedy Method: Minimum Spanning Tree-Prim's Algorithm, Tarjan's Algorithm							
Unit: 2	Introduction to Dynamic programming, principal of optimality, Single Source Shortest							
	Path-Bellman-Ford Algorithm, All Pairs Shortest Paths Algorithm-Johnson's Algorithm,							
	Longest Common Sequence (LCS)							
	String Matching: Introduction to String Matching, application of string matching, Naive							
Unit: 3	algorithm, Rabin Karp algorithm, Knuth Morris-Pratt algorithm, Boyer-Moore							
	Algorithm.							
Unit: 4	NP-Hard and NP-Complete problems: Basic Concepts, Non Deterministic Algorithms, NP -							
UIIIt: 4	Hard and NP-Complete Classes, Cook's theorem. Randomized Algorithms							
	Introduction to parallel algorithm. Parallel Algorithm- Analysis, models, Parallel							
Unit: 5	Random Access Machines (PRAM), Parallel Algorithm Structure, Parallel Algorithms for							
	Sorting, Searching and Merging.							

Examination and Evaluation Pattern: It include both internal evaluation (30 marks) comprising two class sessional exams/ assignments/ quiz/ seminar presentation etc. and external evaluation (70 marks) which is mainly end semester examination.

Text Books:

- 1 Algorithms, Coreman, Rivest, Lisserson, PHI, Third Edition.
- 2 Design and Analysis of Algorithms, Manas Ranjan Kabat, PHI.

- 1 Design and Analysis of Algorithms, R. Panneerselvam, PHI.
- 2 Parallel Algorithms, Henri Casanova, Arnaud Legrand, Yves Robert, CRC Press.

Course Code		Course Title	Lecture					
MTCS160PCP		Advanced Algorithn	n Lab	L	T	P		Semester: I
Version:]	Date of Approval:		0	0	4		
Scheme of Instruction Scheme o			e of	Examination				
No. of Periods		60 Hrs.		Ma	aximum	Score	:	100
Periods/ Week		4		Interr	nal Eval	uation	:	50
Credits	:	2	End Semester : 50					50
Instruction Mode		Lecture	Exam Duration : 3 Hrs					3 Hrs.
Course Ohiostires								

- 1. To practice with programming skill and improve the programming logic.
- 2. To understand the complexity of algorithms.
- 3. To develop skills to apply appropriate data structures and algorithms in problem solving
- 4. Students evolve into a competent programmer capable of designing and analyzing implementations of algorithms and data structures for different kinds of problems.

Course Outcomes:

On successful completion of this course students will be able to:

- 1. describe concepts of data structure and algorithms with respect to practical aspect.
- 2. write the code for a large program after overcoming the time and space complexity.
- 3. write the programs that use arrays, records, linked structures, stacks, queues, trees, and graphs.
- $4. \quad \text{compare alternative implementations of data structures with respect to performance}.$
- 5. choose appropriate data structures and algorithms, understand the ADT/libraries, and use it to design algorithms for a specific problem.

Detailed Contents:

- i. Sort a given set of n integer elements using Quick Sort method and compute its time complexity. Run the program for varied values of n > 5000 and record the time taken to sort. Plot a graph of the time taken versus n on graph sheet. The elements can be read from a file or can be generated using the random number generator. Demonstrate using C/C++/Java/Python how the divide and-conquer method works along with its time complexity analysis: worst case, average case and best case.
- ii. Write the Program to implement the following Sorting Algorithms:
 - i. Heap Sort
 - ii. Shaker Sort
 - iii. Counting Sort
- iii. Write the program to implement the Minimum Spanning Tree:
 - i. Prim's Algorithm
 - ii. Tarjan's Algorithm
- iv. Write a program to implement the Bellman-Ford Algorithm
- v. Write a program to implement the TSP problem.
- vi. Write a program to implement the Longest Common Sequence (LCS) problem.

Write the Program to implement the following Pattern Matching Algorithms:

- i. Naive algorithm
- ii. Rabin Karp algorithm
- iii. Knuth Morris-Pratt algorithm
- iv. Boyer-Moore Algorithm

Examination and Evaluation Pattern: It include both internal evaluation (50 marks) comprising two class sessional exams/assignments/quiz/seminar presentation etc. and external evaluation (50 marks) which is mainly end semester examination.

Text Books:

- 1 The Algorithm Design Manual by Steve S. Skiena, Springer.
- 2 https://ds1-iiith.vlabs.ac.in/data-structures-1/ https://ds2-iiith.vlabs.ac.in/data-structures-2/

- 1 Algorithms: Design and Analysis, Harsh Bhasin, Oxford Publication.
- 2 The Design and Analysis of Algorithms, Annay Levitin, Pearson.

	se Code		Course Title			Lecture	9		
MTCS	112PCT		Advanced Computer	r Architecture	L	T	P		Semester: I
Version:			Date of Approval:		3	0	0		
Scheme of I		n						Exa	mination
No. of Perio		:	60 Hrs.			imum So		:	100 30
Periods/ We	eek	:	4		Internal Evaluation :				
Credits		:	4		End Semester :				70
Instruction		:	Lecture		Exam Duration				3 Hrs.
Detailed C									
Unit: 1	Charact Archite	teri ctu	of Basic Organization and stics of RISC processors, R res, Review of performance me a level, thread level and process	ISC Vs CISC, easurements, Ba	Classif sic par	icatior allel p	n of process	Inst sing	truction Set techniques:
Unit: 2 Instruction level, thread level and process level, Classification of parallel architectures. Instruction Level Parallelism: Basic concepts of pipelining, Arithmetic pipelines, Instruction pipelines, Hazards in a pipeline: structural, data, and control, Hazards, Overview of hazard resolution techniques, Dynamic instruction scheduling, Branch prediction techniques, Instruction-level parallelism using software approaches, Superscalar techniques, Speculative									
	executi			. 1. 1			1	\ r ·	
Unit: 3	Cache 1 Second	me ary	Hierarchies: Basic concept of homory design and implementate memory technology, RAID.	ion, Virtual mei	mory (design	and i	mp	lementation,
Unit: 4	topolog	gies n, S	evel Parallelism: Centralized, Multiprocessor architecture Synchronization, Memory consistences.	, Symmetric m	ultipr	ocesso	rs, Ca	iche	e coherence
Unit: 5	Proces Periph Types a	s I era	.evel Parallelism: Distributed all Devices: Bus structures and uses of storage devices, Interfy, I/O system design, Platform a	standards, Sync acing I/O to the	hrono	us and	l asynd	chro	onous buses,
	ion and E exams/ as	E va sig	luation Pattern: It include both into nments/ quiz/ seminar presentatio	ternal evaluation (3					
Text Books:			,						
			tterson, "Computer Architecture: A q						
2 Kai H	wang, Fay	re A	. Briggs, "Computer Architecture and	Parallel Processing	g" McGr	aw-Hill	interna	tior	nal Edition.
Reference									
1 Kai Hw 2 El-Rew & Sons	rini, H., & <i>F</i>	anc Abd	ed Computer Architecture", Tata Mc(-El-Barr, M. (2005). Advanced compu	Graw-Hill iter architecture an	d parall	el proc	essing (Vol.	42). John Wile

Course Code		Course Title		Lecture				
MTCS111PET		Advanced Network Security (Elective-I)		L	T	P		Semester: I
Version:]	Date of Approval:		3	0	0		
Scheme of Instruction	on		Scheme of Examina		Examination			
No. of Periods	:	60 Hrs.		Ma	ximum	Score		100
Periods/ Week	:	4	Internal Evaluation :				30	
Credits	:	3			End Sen	nester	••	70
Instruction Mode	:	Lecture		E	xam Du	ration	:	3 Hrs.

- 1. To understand the concept of security and privacy.
- 2. To understand the concept of Public and Private key cryptography.
- 3. To study about message authentication and hash functions
- 4. To understand various protocols for network security to protect against the threats in the networks.

Course Outcomes:

On successful completion of this course students will be able to:

- 1. Provide security of the data over the network.
- 2. Implement various networking protocols.
- 3. Protect any network from the threats in the world.
- 4. Do research in the emerging areas of cryptography and network security.

Detailed Contents:

Detailed	Contents
Unit: 1	Introduction to the concepts of Security: The need for security, security approaches, principles of security, modular arithmetic, prime numbers, relative prime numbers, Euler's function, Symmetric Cryptography: Overview of symmetric cryptography, Algorithm types and Modes, International Data Encryption, Algorithm (IDEA), Advanced Encryption Standard (AES)
Unit: 2	Asymmetric Cryptography: Overview of asymmetric cryptography, Rabin algorithm, ElGamal Algorithm, Knapsack Algorithm, Elliptic Curve
	Cryptography. Identity Based Cryptography: Introduction, Boneh-Franklin IBE (BF-IBE), Sakai-
Unit: 3	Kasahara IBE (SK-IBE), Boneh-Boyen IBE, (BB-IBE)
Unit: 4	Public Key Infrastructure: Digital Certificates, Key Management. Hash Functions, Digital Signature, Message Integrity, Message Authentication, Entity Authentication
Unit: 5	Security at the Application Layer: Email, PGP. Security at the Transport Layer: SSL and TLS. Security at the Network Layer: IPSec. System Security: Malicious
	Programs, IDS, Firewalls.

Examination and Evaluation Pattern: It include both internal evaluation (30 marks) comprising two class sessional exams/ assignments/ quiz/ seminar presentation etc. and external evaluation (70 marks) which is mainly end semester examination.

Text Books:

- 1 Cryptography and Network security, Behrouz A. Forouzan and Debdeep Mukhopadhyay, McGraw Hill.
- 2 Introduction to Modern Cryptography, Jonathan Katz and Yehuda Lindell, CRC Press.

- 1 Understanding Cryptography, Christof Paar and Jan Pelzl, Springer.
- 2 Cryptography and Information Security, V K Pachghare, PHI.

Course Code		Course Title		Lecture				
MTCS161PEP		Advanced Network Seco	Advanced Network Security Lab		T	P		Semester: I
Version:]	Date of Approval:		0	0	4		
Scheme of Instruction	on				9	Scheme	of	Examination
No. of Periods	:	60 Hrs.		Ma	ximum	Score	••	100
Periods/ Week	:	4		Intern	al Evalı	uation	••	50
Credits	:	2	End Semester : 50				50	
Instruction Mode	:	Lecture	Exam Duration : 3 Hrs.				3 Hrs.	
Course Objectives		<u> </u>						

- Course Objectives:
- 1. To understand the defend and protect the network infrastructure, architecture, protocols and applications in order to deliver secured protocols, applications, services and data.
- 2. Train the students to develop 'hands-on' skills on using tools and testbeds in order to design network and security experiments/simulations.
- 3. Prepare the students to perform critical thinking, idea generation and implementation, and integration with existing systems when solving real research problems.

A student passing this course should be able to:

- 1. Demonstrate the ability to understand and synthesize the principles of network security architectures and security frameworks and models;
- 2. Data integrity, Authentication, Digital Signatures.
- 3. capable of analysing, designing and managing the requirements of a secure network architecture based on risk analysis and operational requirements in accordance with regulations and standards.
- 4. Various network security applications, IPSec, Firewall, IDS, Web security, Email security, and Malicious software etc.

Detailed Contents:

- 1. Write a Program to implement International Data Encryption Algorithm (IDEA).
- 2. Write a Program to implement Advanced Encryption Standard (AES) Algorithm.
- 3. Write a Program to implement Rabin Algorithm.
- 4. Write a Program to implement ElGamal Algorithm
- 5. Write a Program to implement Knapsack Algorithm.
- 6. Write a Program to implement Elliptic Curve Cryptography (ECC).
- 7. Write a Program to implement Digital Signature.
- 8. Write the program to implement the ID based cryptography algorithms:
 - i. Boneh-Franklin IBE (BF-IBE)
 - ii. Sakai-Kasahara IBE (SK-IBE)
 - iii. Boneh-Boyen IBE, (BB-IBE)
- 9. Study the web server's code, and find examples of code vulnerable to memory corruption through a buffer overflow. Write down a description of each vulnerability in the file /home/httpd/lab/bugs.txt; use the format described in that file. For each vulnerability, describe the buffer which may overflow, how you would structure the input to the web server (i.e., the HTTP request) to overflow the buffer, and whether the vulnerability can be prevented using stack canaries. Locate at least 5 different vulnerabilities.

Examination and Evaluation Pattern: It include both internal evaluation (50 marks) comprising two class sessional exams/assignments/quiz/seminar presentation etc. and external evaluation (50 marks) which is mainly end semester examination.

Text Books:

- 1 Practical Cryptography in Python, James Nielson and Christopher K. Monson, Apress Publication.
- 2 Applied Cryptography: Protocols, Algorithms and Source Code in C, Bruce Schneier, Wiley.

- Practical Cryptography for Developers, Svetlin Nakov, https://cryptobook.nakov.com/ (This book is freely available.)
- Practical Cryptography: Algorithms and Implementations Using C++, Saiful Azad and Al-Sakib Khan Pathan, CRC Press. Source Code: https://sites.google.com/site/spathansite/praccrypt
- 3 Virtual Lab: http://cse29-iiith.vlabs.ac.in/Introduction.html

MTCS112	PET .			Distributed I	Database		L	Т	P		Semester-I
Data of A	mmuoval.			(Elective-1)			4	0	4		
Date of A Version:	pprovai						4		•	f Ex	kamination
Scheme	of	:	60 Hrs.				Mar	ximum			100
Instruction	_		00 1113.		Haamam score . 100						100
Periods/		:	4				Intern	al Evalı	uation	:	30
Credits		:	4+2					nd Sen		:	70
Instructio	n Mode	:	Lecture				Ex	am Du	ration	:	3 Hrs.
Course O											
theore databa 2. To ex develo	tical and se techno pose act pment.	pr olog ive	ractical aspo gy to tackle and emer	owledge of da ects of the data deficiencies of the ging research y building and	abase techn he centralize issues in c	ologies and ed database listributed	show system databa	ing the is. se sys	e need tems a	for nd	distributed application
	e Web sei	-	-	, 0				•			
Course O											
_			-	for data fragme	entation, rep	plication, an	d allo	cation	during 1	the	distributed
5. Evalua amour	amount of data transfer. Describe distributed concurrency control based on the distinguished copy techniques and the voting										
Unit: 1	View	Sei	rializabilit	chedules, Co y, Testing f							
			less sched								
Unit: 2	Multis	ess	sion Tecl	cols, time st nniques, enf re for locking	orcing se	erializablit		-			•
Unit: 3	Introduction to distributed databases, advantages and disadvantages of										
Unit: 4	Recovery and atomicity in Distributed Databases, Traditional recovery					ensuring					
Unit: 5 Distributed Query Processing, Semi joins, general queries Cost based query optimization for Distributed database, integrity constraints in distributed database, Distributed Deadlock.											
Text Boo	ks:	_					_			_	

1 Silberschatz, corth and Sudershan, Database System Concept, McGraw Hill.

1 Ceei and Pelagatti, 'Distributed Database', TMH.

Reference Books:

2 Garcia-Molina, Ullman, Widom,' Database System Implementation' Pearson Education

Course Code Course Title				Lectur	e			
MTCS113PET		Data Science (Elective-2) L T P			Semester: I			
Version:]	Date of Approval:		3	0	0		
Scheme of Instruction	on			Scheme of Examination			Examination	
No. of Periods	:	60 Hrs.		Ma	aximum	Score	••	100
Periods/ Week	:	4		Intern	al Eval	uation		30
Credits	:	4	End Semester : 70				70	
Instruction Mode	:	Lecture		E	xam Du	ration	:	3 Hrs.

- 1. Provide with the knowledge and expertise to become a proficient data scientist.
- 2. Demonstrate an understanding of statistics and machine learning concepts that are vital for data science
- 3. Produce Python code to statistically analyse a dataset
- 4. Critically evaluate data visualisations based on their design and use for communicating stories from data

Course Outcomes:

On completion of the course the student should be able to

- 1. Explain how data is collected, managed and stored for data science
- 2. Understand the key concepts in data science, including their real-world applications and the toolkit used by data scientists
- 3. Implement data collection and management scripts

Datail		Comtomto
Detail	leu	Contents:

Unit: 1	Introduction to core concepts and technologies: Introduction, Terminology, data science process, data science toolkit, Types of data, Example applications
	Data collection and management: Introduction, Sources of data, Data collection
Unit: 2	and APIs, Exploring and fixing data, Data storage and management, Using multiple data sources
	Data analysis: Introduction, Terminology and concepts, Introduction to
Unit: 3	statistics, Central tendencies and distributions, Variance, Distribution
Ullit. 3	properties and arithmetic, Samples/CLT, Basic machine learning algorithms,
	Linear regression, SVM, Naive Bayes.
	Data visualization: Introduction, Types of data visualization, Data for
Unit: 4	visualization: Data types, Data encodings, Retinal variables, Mapping variables
	to encodings, Visual encodings.
	Applications of Data Science, Technologies for visualization, Bokeh (Python),
Unit: 5	Recent trends in various data collection and analysis techniques, various
Ullit. J	visualization techniques, application development methods of used in data
	science.

Examination and Evaluation Pattern: It include both internal evaluation (30 marks) comprising two class sessional exams/ assignments/ quiz/ seminar presentation etc. and external evaluation (70 marks) which is mainly end semester examination.

Text Books:

- 1 Cathy O'Neil and Rachel Schutt. Doing Data Science, Straight Talk From The Frontline. O'Reilly.
- ² Jure Leskovek, AnandRajaraman and Jeffrey Ullman. Mining of Massive Datasets. v2.1, Cambridge University Press.

- Field Cady, The Data Science Handbook, Wiley
- ² Jake VanderPlas, Python Data Science Handbook: Essential Tools for working with Data, OReily

Course Code		Course Title			Lectur	e		
MTCS163PEP		Data Science La	b	L	T	P		Semester: II
Version:		Date of Approval:		0	0	4		
Scheme of Instruct	ion		Scheme of Examination				Examination	
No. of Periods	:	60 Hrs.		Ma	aximum	Score	:	100
Periods/ Week	:	4	Internal Evaluation : 50				50	
Credits	:	2	End Semester : 50				50	
Instruction Mode	:	Lecture	Exam Duration : 3 I				3 Hrs.	

- 4. To learn the essential concepts of Python programming
- 5. To gain in-depth knowledge of data analytics
- 6. To perform data visualization, web scraping, and natural language processing.

Course Outcomes:

A student passing this course should be able to:

- 1. Understand the essential concepts of Python programming such as datatypes, tuples, lists, dicts, basic operators, and functions
- 2. Perform high-level mathematical computations using the NumPy and SciPy packages and their large library of mathematical functions
- 3. Perform data analysis and manipulation using data structures and tools provided in the Pandas package
- 4. Use the Scikit-Learn package for natural language processing and matplotlib library of Python for data visualization

Detailed Contents:

- 1. Evaluate the datasets containing GDPs of different countries
- 2. Evaluate the datasets of Summer Olympics, 2012
- 3. Use SciPy to solve a linear algebra problem
- 4. Use SciPy to define 20 random variables for random values
- 5. Analyze the any dataset using Pandas
- 6. Analyze the dataset in csv format
- 7. Evaluate a dataset to find the features or media channels used by a firm and sales figures for each channel
- 8. Analyze a dataset to find the features and response label of it
- 9. Analyze a given spam collection dataset
- 10. Analyze the sentiment dataset using NLP
- 11. Analyze the "auto mpg data" and draw a pairplot using seaborn library for mpg, weight, and origin
- 12. Draw a pie chart to visualize a dataset
- 13. Scrape the any website page to perform some tasks
- 14. Scrape the any website page to perform some tasks
- 15. Using Hadoop Streaming for Calculating Word Count
- 16. Using PvSpark to Determine Word Count

Examination and Evaluation Pattern: It include both internal evaluation (50 marks) comprising two class sessional exams/assignments/quiz/seminar presentation etc. and external evaluation (50 marks) which is mainly end semester examination.

Text Books:

- 1 Jake VanderPlas, Python Data Science Handbook: Essential Tools for working with Data, OReily
- Field Cady, The Data Science Handbook, Wiley

- Cathy O'Neil and Rachel Schutt. Doing Data Science, Straight Talk From The Frontline. O'Reilly.
- ² Jure Leskovek, AnandRajaraman and Jeffrey Ullman. Mining of Massive Datasets. v2.1, Cambridge University Press.

Course (Code	Course Tit	le		Lectur	re				
MTCS11		Semantic Web (E		L	Т	P	Semester-I			
Version:		Date of Approval:		4	0	4				
Scheme of In				Scheme of Examination						
No. of Period		60 Hrs.		Maximum Score : 100						
Periods/ Wee	ek :	4			nal Eval		: 30			
Credits Instruction M	/lode :	4+2 Lecture			End Sei xam Du		: 70 : 3 Hrs.			
Course Obje		Lecture			Maili Di	ii atioii	. 5 1113.			
		nantic Web Vision								
2. Unders	tanding al	oout XML,RDF,RDFS,OWL								
3. Queryir	ng Ontolog	gy .								
	gy Reasoni									
		ocument to Data Web								
Course Out										
		semantic web Vision and tech	nologies							
		it ontology								
3. Unders		bout Data Web	Talandaria Ir			C				
		tion of Semantic Web	•							
Unit: 1		ic Web, Semantic Web T	_	-			-			
Unit: 1	Logic, I	ntroduction, Definition o	f the basic form	alism	, Rea	soning	g algorithms,			
	Languag	ge extensions								
	Structur	red Web Documents	in XML. Introd	uctio	n. XI	MI.	Structuring,			
Unit: 2		aces, Addressing and que	·		•	•	ou decaring,			
		ng Web Resources: RDF ,					F: XML-Based			
Unit: 3		RDF serialization , RDF Sc								
ome. 5		RDF Schema in RDF Sche), ILD	Deric	Jiiia. I	ne bangaage,			
		ntology Language: OWL		17.771	and I	DE/D	DFS, Three			
11.4 4						•				
Unit: 4	_	uages of OWL, Descripti	on of the OWL	Lang	uage,	Layer	ing of OWL,			
		es, OWL in OWL								
Unit: 5	-	-SPARQL simple Graph			-		erns, Group			
Offic. 5	Patterns	s, Queries with Data Value	s, Filters, OWL Fo	rmal S	Semar	ıtics				
Text Books										
		rimer by Grigoris Antoniou Fra								
		ving the Web into a Global Data		, Chris	tian Biz	zer, Mo	rgan & Claypool			
		Description Logic by Franz Baa	der, Warner Nutt							
Reference I			1 II: - 1 N/ 1 1	C-1 :						
		nantic Web Technologies, Pasca				.on 1/1-	ngan 0 Clarma - 1			
		ving the Web into a Global Data	space by 10m Heath	, CHTIS	uan BlZ	zer, Mo	rgan & Claypool			
publicat Basic De		Logic by Franz Baader, Warner	Nutt							
שמאונ של	oci ipuuii i	Logic by Franz Daauer, Warner	muit							

Course Code		Course Title		Lecture				
MTCS121PET		Intelligent Systems (Electiv	re-2)	L	T	P	Se	emester: I
Version:		Date of Approval:		4	0	0		
Scheme of Instru	uct	iction Scheme of Exam			ion			
No. of Periods		60 Hrs.	Maximum Score	9			:	100
Periods/ Week	:	4	Internal Evalua	tion			:	30
Credits	:	4	End Semester : 70				70	
Instruction	:	Lecture	Exam Duration	•	•		:	3 Hrs.
Mode								

The aim of the course is to introduce to the field of Artificial Intelligence (AI) with emphasis on its use to solve real world problems for which solutions are difficult to express using the traditional algorithmic approach. It explores the essential theory behind methodologies for developing systems that demonstrate intelligent behavior including dealing with uncertainty, learning from experience and following problem solving strategies found in nature.

Course Outcomes:

At the end of the course student will be able to:

Able to Demonstrate knowledge of the fundamental principles of intelligent systems and would be able to analyze and compare the relative merits of a variety of AI problem solving techniques.

Detailed Contents:

Detailed	Contents.
Unit: 1	Biological foundations to intelligent systems I: Artificial neural networks, Back propagation networks, Radial basis function networks, and recurrent networks.
Unit: 2	Biological foundations to intelligent systems II: Fuzzy logic, knowledge Representation and inference mechanism, genetic algorithm, and fuzzy neural networks.
Unit: 3	Search Methods Basic concepts of graph and tree search. Three simple search methods: breadth-first search, depth-first search, iterative deepening search. Heuristic search methods: best-first search, admissible evaluation functions, hill-climbing search. Optimization and search such as stochastic annealing and genetic algorithm.
Unit: 4	Knowledge representation and logical inference Issues in knowledge representation. Structured representation, such as frames, and scripts, semantic networks and conceptual graphs. Formal logic and logical inference. Knowledge-based systems structures, its basic components. Ideas of Blackboard architectures.
Unit: 5	Reasoning under uncertainty and Learning Techniques on uncertainty reasoning such as Bayesian reasoning, Certainty factors and Dempster-Shafer Theory of Evidential reasoning, A study of different learning and evolutionary algorithms, such as statistical learning and induction learning.

Examination and Evaluation Pattern: It include both internal evaluation (30 marks) comprising two class sessional exams/ assignments/ quiz/ seminar presentation etc. and external evaluation (70 marks) which is mainly end semester examination.

Text Books:

- 1 Luger G.F. and Stubblefield W.A. (2008). Artificial Intelligence: Structures and strategies for Complex Problem Solving. Addison Wesley, 6th edition.
- 2 Russell S. and Norvig P. (2009). Artificial Intelligence: A Modern Approach. Prentice-Hall, 3rd Edition.

- Laurene Fausett, "Fundamentals of Neural Networks, Architecture, Algorithms, and Applications", Prentice Hall, 1993
- 2 Anderson-An introduction to Artificial Neural Networks||, Prentice Hall.

Course Code		Course Title				e		
MTCS122PET		Augmented & Virtual Reality -(Elective-I)		L	T	P		Semester: I
Version:		Date of Approval:		4	0	4		
Scheme of Instruct	tion				9	Scheme	of	Examination
No. of Periods	:	60 Hrs.		Ma	aximum	Score	:	100
Periods/ Week	:	4	Internal Evaluation : 30				30	
Credits	:	4+2	End Semester : 70				70	
Instruction Mode	:	Lecture	Exam Duration : 3 Hr				3 Hrs.	

- 2. To understand the basic concept and framework of virtual reality.
- 3. To understand the elements, architecture, input and output devices of virtual and augmented reality systems.
- 4. To explore the research issues in Augmented Reality and Virtual Reality (AR &VR).

Course Outcomes:

Reference Books:

Design, Morgan Kaufmann, 2009.

- 5. Can Able to explore the research issues in Augmented Reality and Virtual Reality (AR&VR).
- 6. Able to describe the main application of VR and AR technologies in various area like education games etc..
- 7. Able to analyse the role and importance of VR &AR in the modern world.

	•
Detailed	Contents:
Unit: 1	Introduction of Virtual Reality: Fundamental Concept and Components of Virtual Reality. Primary Features and Present Development on Virtual Reality.
Unit: 2	Multiple Models of Input and Output Interface in Virtual Reality: Input Tracker, Sensor, Digital Glove, Movement Capture, Video-based Input, 3D Menus & 3DScanner etc. Output Visual /Auditory / Haptic Devices.
Unit: 3	Visual Computation in Virtual Reality: Fundamentals of Computer Graphics. Software and Hardware Technology on Stereoscopic Display. Advanced Techniques in CG: Management of Large Scale Environments & Real Time Rendering.
Unit: 4	Interactive Techniques in Virtual Reality: Body Track, Hand Gesture, 3D Manus, Object Grasp. Development Tools and Frameworks in Virtual Reality: Frameworks of Software Development Tools in VR. X3D Standard; Vega, MultiGen, Virtools etc. Application of VR in Digital Entertainment: VR Technology in Film & TV Production. VR Technology in Physical Exercises and Games. Demonstration of Digital Entertainment by VR.
Unit: 5	Augmented and Mixed Reality, Taxonomy, technology and features of augmented reality, difference between AR and VR, Challenges with AR, AR systems and functionality, Augmented reality methods, visualization techniques for augmented reality, wireless displays in educational augmented reality applications, mobile projection interfaces, marker-less tracking for augmented reality, enhancing interactivity in AR environments, evaluating AR systems.
exams/ a	tion and Evaluation Pattern: It include both internal evaluation (30 marks) comprising two class sessional assignments/ quiz/ seminar presentation etc. and external evaluation (70 marks) which is mainly end examination.
Text Book	s:
1 Burde	ea, G. C. and P. Coffet. Virtual Reality Technology, Second Edition. Wiley-IEEE Press, 2003/2006.
2 Alan	3. Craig, Understanding Augmented Reality, Concepts and Applications, Morgan Kaufmann, 2013.

Alan Craig, William Sherman and Jeffrey Will, Developing Virtual Reality Applications, Foundations of Effective

Gerard Jounghyun Kim, Designing Virtual Systems: The Structured Approach, 2005.

Course Code		Course Title		Lecture				Semester:
MTCS123PET		Soft Computing (Elective-2)		L	T	P		semester:
Version:		Date of Approval:			1	0		1
Scheme of Instruction					Sche	me of	Ex	amination
No. of Periods		60 Hrs.		Maximum Score : 100				
Periods/ Week	:	4	Ir	nternal Evaluation :				30
Credits	:	4		End Semester :				70
Instruction	:	Lecture		Exam Duration : 3				
Mode								

- 1. To introduce soft computing concepts and techniques and foster their abilities in designing appropriate technique for a given scenario.
- 2. To implement soft computing-based solutions for real-world problems.
- 3. To give students knowledge of non-traditional technologies and fundamentals of artificial neural networks, fuzzy sets, fuzzy logic, genetic algorithms.
- 4. To provide student hand-on experience on MATLAB to implement various strategies.

Course Outcomes:

At the end of the course student will be able to:

- 1. Identify and describe soft computing techniques and their roles in building intelligent machines
- 2. Apply fuzzy logic and reasoning to handle uncertainty and solve various engineering problems.
- 3. Apply genetic algorithms to combinatorial optimization problems.
- 4. Evaluate and compare solutions by various soft computing approaches for a given problem.

Detailed Contents: INTRODUCTION TO SOFT COMPUTING AND NEURALNETWORKS: Evolution of Unit: 1 Computing: Soft Computing Constituents, From Conventional AI Computational Intelligence: Machine Learning Basics FUZZY LOGIC: Fuzzy Sets, Operations on Fuzzy Sets, Fuzzy Relations, Unit: 2 Membership Functions: Fuzzy Rules and Fuzzy Reasoning, Fuzzy Inference Systems, Fuzzy Expert Systems, Fuzzy Decision Making. NEURAL NETWORKS: Machine Learning Using Neural Network, Adaptive Networks, Feed forward Networks, Supervised Learning Neural Networks, Unit: 3 Radial Basis Function Networks: Reinforcement Learning, Unsupervised Learning Neural Networks, Adaptive Resonance architectures, Advances in Neural networks GENETIC ALGORITHMS: Introduction to Genetic Algorithms (GA), Applications Unit: 4 of GA in Machine Learning: Machine Learning Approach to Knowledge Acquisition. Recent Trends in deep learning, various classifiers, neural networks and genetic Unit: 5 algorithm. Implementation of recently proposed soft computing techniques.

Examination and Evaluation Pattern: It include both internal evaluation (30 marks) comprising two class sessional exams/ assignments/ quiz/ seminar presentation etc. and external evaluation (70 marks) which is mainly end semester examination.

Text Books:

- 1 Jyh: Shing Roger Jang, Chuen: Tsai Sun, Eiji Mizutani, Neuro: Fuzzy and Soft Computing, Prentice: Hall of India, 2003.
- 2 George J. Klir and Bo Yuan, Fuzzy Sets and Fuzzy Logic: Theory and Applications, Prentice Hall, 1995.

- 1 Luger G.F. and Stubblefield W.A. (2008). Artificial Intelligence: Structures and strategies for Complex Problem Solving. Addison Wesley, 6th edition.
- 2 Russell S. and Norvig P. (2009). Artificial Intelligence: A Modern Approach. Prentice-Hall, 3rd Edition.

Course Code		Course Title		Lecture				
MTCS124PET		Digital Forensics (Ele	ctive-2)	L	T	P		Semester: I
Version:		Date of Approval:		4	0	0		
Scheme of Instruct	Scheme of Examination					Examination		
No. of Periods	:	60 Hrs.		Maximum Score : 100				
Periods/ Week	:	4		Internal Evaluation : 30				
Credits	:	4		End Semester : 70				
Instruction Mode	:	Lecture		Exam Duration : 3 Hrs				
Course Objectives:								
1. Have an introduction into the process of Digital Forensics.								
2. Understand the Environment of forensics & learn process of collecting evidences.								
Course Outcomes:								
1 Identify the nee	1. Identify the need for cyhercrime investigation							

- 1. Identify the need for cybercrime investigation.
- 2. Understand the hardware and software components responsible for seeking evidence.
- 3. Have knowledge on the techniques used for collecting evidences.
- 4. Analyze the evidence through suitable tools.
- 5. Examine other sources of evidences.

Detailed C	Detailed Contents:							
	INTRODUCTION: Introduction to Forensic Science, Digital Forensics, Digital							
	Evidence. Digital Forensics Process: - Identification, Collection, Examination,							
Unit: 1	Analysis, Presentation Phases.							
	Cyber Crime Law- International Legal Framework of Cybercrime Law, Digita							
	Crime, Investigation Methods for Collecting Digital Evidence.							
	FORENSICS ENVIRONMENTS: Hardware and Software Environments – Storage							

- Devices, Operating System, File Systems, and Metadata, Locating evidence in file Unit: 2 systems-Password security, Encryption, and Hidden files. Case study - linking the evidence to the user, Data Analysis using forensics tool ILookIX. COLLECTING EVIDENCES: Use of Digital Evidence, File Metadata and Correlation with Other Evidence, Technical Complexities of Digital Evidence. Unit: 3 Data carving, Date and time problems, Physical Acquisition and Safekeeping of
- Digital Evidence. Forensic Imaging Processes. Case Study IXImager, Understanding .ASB Container. ANALYZING DIGITAL EVIDENCE: Selecting and Analyzing Digital Evidence -Locating digital evidence, Categorizing files, Eliminating superfluous files, Unit: 4 Validating the Evidence . Case study - illustrating the recovery of deleted

evidence held in volume shadows. OTHER SOURCES OF EVIDENCES: Windows and Other Operating Systems as Sources of Evidence, Examining Browsers, E-mails, Messaging Systems, and Unit: 5 Mobile Phones, Internet and Cloud Challenges in Digital Forensics. Digital forensic Report writing & Presentation, Validation of Report.

Examination and Evaluation Pattern: It include both internal evaluation (30 marks) comprising two class sessional exams/ assignments/ quiz/ seminar presentation etc. and external evaluation (70 marks) which is mainly end semester examination.

Text Books:

- 1 Richard Boddington, Practical Digital Forensics, PACKT publishing, First Edition, 2016 ANDRÉ ÅRNES.
- 2 Practical Mobile Forensics, PACKT publishing, 2014 Satish Bommisetty, Rohit Tamma, Heather Mahalik

- 1 "Guide to Computer Forensics and Investigations" 4e, Nelson, Phillips Enfinger, Steuart, Cengage Learning.
- Android Forensics Investigation, Analysis, and Mobile Security for Google Android, Andrew Hoog, John McCash.

MTCS111RMT		Research Methodology	and IPR	L	T	P		
Version:		Date of Approval:		2	0	0		
Scheme of Instruction				Sch	eme o	f E	xamination	
No. of Periods	:	30 Hrs.	Maximum Score				:	50
Periods/ Week	:	2	Internal Evaluati	on			:	15
Credits	:	2	End Semester				:	35
Instruction	:	Lecture	Exam Duration				:	2 Hrs.
Mode								

Prerequisite(s): It is expected that the students have done any programming language course

Course Objectives:

- 1. Understanding research problem and scientific approaches applied for
- 2. Analyse research related information and follow the research ethics
- 3. Understanding the need of Intellectual Property Right to be promoted among students in general & engineering in particular.

Course Outcomes:

After successful completion of the course the Students will be able to:

- 1. Design and formulate research problem scientifically and identify the research objectives
- **2.** Apply the systematic approach to achieve research objectives with value and ethics in research publications
- 3. Implementing the patent rights for the developed research, Copyright & IPR

Detailed Contents:

I Init. 1	Meaning of research problem, Sources of research problem, Criteria Characteristics of a
Unit: 1	good research problem, Errors in selecting a research problem, Scope and objectives of
	research problem, Approaches of investigation of solutions for research problem.
	Data Analysis and Statistical Techniques Data and their analyses, quantitative methods and
	techniques, Measure of central tendency, measures of variation, frequency distribution,
Unit: 2	analysis of variance methods, identifying the distribution with data, parameter estimation,
	Goodness-of-Fit tests-Chi-Square test, Correlation analysis, Regression analysis, time series
	and forecasting. test of hypothesis
Unit: 3	Effective technical writing, how to write report, Paper Developing a Research Proposal,
Unit. 3	Format of research proposal, a presentation and assessment by a review committee
	Patents and Copyright:
Unit: 4	Process of Patenting and Development: International Scenario: International cooperation on
	Intellectual Property. Procedure for grants of patents, Patenting under PCT.

Examination and Evaluation Pattern: It include both internal evaluation (15 marks) comprising two class sessional exams/ assignments/ quiz/ seminar presentation etc. and external evaluation (35 marks) which is mainly end semester examination.

Text Books:

- 1 Stuart Melville and Wayne Goddard, "Research methodology: an introduction for science & engineering students"
- Wayne Goddard and Stuart Melville, "Research Methodology: An Introduction" Ranjit Kumar, 2nd Edition, "Research Methodology: A Step by Step Guide for beginners"

- 1 Ranjit Kumar,2nd Edition, "Research Methodology: A Step by Step Guide for beginners"
- 2 Halbert, "Resisting Intellectual Property", Taylor & Francis Ltd, 2007.

Course Code		Course Title		Lecture				
PGCS131GET		ENGLISH FOR RESEARCH PAPER		L	T	P		Semester: I
		WRITING (Generic Elective-I)						Semester: 1
Version:]	Date of Approval:		4	0	0		
Scheme of Instruction	on		Scheme of Examination			Examination		
No. of Periods	:	60 Hrs.	Maximum Score : 100				100	
Periods/ Week	:	4	Internal Evaluation : 30			30		
Credits	:	4	End Semester : 70				70	
Instruction Mode	:	Lecture	Exam Duration : 3 Hrs.				3 Hrs.	

- 1. Understand that how to improve your writing skills and level of readability
- 2. Learn about what to write in each section
- 3. Understand the skills needed when writing a Title Ensure the good quality of paper at very first-time submission

Course Outcomes:

1. Understand the English for Writing Research Papers, Thesis.

Detailed (Contents:								
	Planning and Preparation, Word Order, Breaking up long sentences,								
Unit: 1	Structuring Paragraphs and Sentences, Being Concise and Removing								
	Redundancy, Avoiding Ambiguity and Vagueness								
Unit: 2	Clarifying Who Did What, Highlighting Your Findings, Hedging and Criticizing,								
UIIIt. Z	Paraphrasing and Plagiarism, Sections of a Paper, Abstracts. Introduction								
Unit: 3	Review of the Literature, Methods, Results, Discussion, Conclusions, The Final								
Ullit: 3	Check.								
	Key skills are needed when writing a Title, key skills are needed when writing								
Unit: 4	an Abstract, key skills are needed when writing an Introduction, skills needed								
	when writing a Review of the Literature,								
	Skills are needed when writing the Methods, skills needed when writing the								
IImit. C	Results, skills are needed when writing the Discussion, skills are needed when								
Unit: 5	writing the Conclusions. useful phrases, how to ensure paper is as good as it								
	could possibly be the first- time submission								

Examination and Evaluation Pattern: It include both internal evaluation (30 marks) comprising two class sessional exams/ assignments/ quiz/ seminar presentation etc. and external evaluation (70 marks) which is mainly end semester examination.

Te	ext Books:						
1	Goldbort R (2006) Writing for Science, Yale University Press (available on Google Books)						
2	Day R (2006) How to Write and Publish a Scientific Paper, Cambridge University Press						
Re	Reference Books						
1	Highman N (1998), Handbook of Writing for the Mathematical Sciences, SIAM. Highman's book.						
2	Adrian Wallwork, English for Writing Research Papers, Springer New York Dordrecht Heidelberg London, 2011.						

Course Code		Course Title			Lectur	e			
PGCS132GET		DISASTER MANAGEMENT (Generic Elective-I)		L	Т	P		Semester: I	
Version:		Date of Approval:	-1)	4	0	0			
Scheme of Instruct	truction Scheme of Examination						Examination		
No. of Periods	:	60 Hrs.		Maximum Score : 100				100	
Periods/ Week	:	4		Internal Evaluation : 30				30	
Credits	:	4			End Semester : 70				
Instruction Mode	:	Lecture		Exam Duration : 3 Hrs.				3 Hrs.	
Course Objectives:									
1. learn to demo	nstr	ate a critical understanding of key	concepts in disa	ster ri	sk redı	iction a	and		
humanitarian response.									
2. critically evaluate disaster risk reduction and humanitarian response policy and practice from multiple perspectives.									
2 develop on un	dana	standing of standards of humanita	rian raananaa an	d	مسلممنه	10,,,,,,	. :.	. amaaifia	

- develop an understanding of standards of humanitarian response and practical relevance in specific types of disasters and conflict situations.
- 4. critically understand the strengths and weaknesses of disaster management approaches, planning and programming in different countries, particularly their home country or the countries they work in

1.----

Detailed	Detailed Contents:							
	Introduction Disaster: Definition, Factors And Significance; Difference Between							
Unit: 1	Hazard And Disaster; Natural And Manmade Disasters: Difference, Nature, Types And							
	Magnitude.							
Repercussions Of Disasters And Hazards: Economic Damage, Loss Of Huma								
	Animal Life, Destruction Of Ecosystem. Natural Disasters: Earthquakes, Volcanisms,							
Unit: 2	Cyclones, Tsunamis, Floods, Droughts And Famines, Landslides And Avalanches, Man-							
	made disaster: Nuclear Reactor Meltdown, Industrial Accidents, Oil Slicks And Spills,							
	Outbreaks Of Diseases And Epidemics, War And Conflicts.							
	Disaster Prone Areas In India Study Of Seismic Zones; Areas Prone To Floods And							
Unit: 3	Droughts, Landslides And Avalanches; Areas Prone To Cyclonic And Coastal Hazards							
	With Special Reference To Tsunami; Post Disaster Diseases And Epidemics							
	Disaster Preparedness And Management Preparedness: Monitoring Of Phenomena							
IInit. 1	Triggering A Disaster Or Hazard; Evaluation of Risk: Application Of Remote							
Unit: 4	Sensing, Data From Meteorological And Other Agencies, Media Reports:							

Risk Assessment Disaster Risk: Concept And Elements, Disaster Risk Reduction, Global And National Disaster Risk Situation. Techniques Of Risk Assessment, Global Co-Operation In Risk Assessment And Warning, People's Participation In Risk Unit: 5 Assessment. Strategies for Survival. Disaster Mitigation Meaning, Concept And Strategies Of Disaster Mitigation, Emerging Trends In Mitigation. Structural Mitigation And Non-Structural Mitigation, Programs Of Disaster Mitigation In India.

Governmental And Community Preparedness.

Examination and Evaluation Pattern: It include both internal evaluation (30 marks) comprising two class sessional exams/ assignments/ quiz/ seminar presentation etc. and external evaluation (70 marks) which is mainly end semester examination.

Text Books:

- Sahni, PardeepEt.Al. (Eds.)," Disaster Mitigation Experiences And Reflections", Prentice Hall Of
- Goel S. L., Disaster Administration And Management Text And Case Studies", Deep & Deep Publication

Reference Books

R. Nishith, Singh AK, "Disaster Management in India: Perspectives, issues and strategies "'New

Course Code		Course Title	e Lecture					
PGCS133GET		Sanskrit for Technical Knowledge		L	T	P		
		(Generic Elective	(Generic Elective-1)					Semester: I
Version:]	Date of Approval:		4	0	0		
Scheme of Instruction	of Instruction Scheme of Exam			Examination				
No. of Periods	:	60 Hrs.		Maximum Score : 100			100	
Periods/ Week	:	4		Internal Evaluation : 30				30
Credits	:	4	End Semester : 70				70	
Instruction Mode	:	Lecture	Exam Duration : 3 Hrs.					3 Hrs.
Course Objectives:								

- 1. To get a working knowledge in illustrious Sanskrit, the scientific language in the world
- 2. Learning of Sanskrit to improve brain functioning
- 3. Learning of Sanskrit to develop the logic in mathematics, science & other subjects enhancing the memory power
- 4. The engineering scholars equipped with Sanskrit will be able to explore the huge knowledge from ancient literature

- 1. Understanding basic Sanskrit language
- 2. Ancient Sanskrit literature about science & technology can be understood
- 3. Being a logical language will help to develop logic in students

Deta	led Contents:						
Unit	Alphabets in Sanskrit, Past/Present/Future Tense, Simple Sentences						
Unit	Order, Introduction of roots						
Unit	: 3 Technical information about Sanskrit Literature						
Unit	Technical concepts of Engineering-Electrical, Mechanical, Architecture,						
UIII	Mathematics						
Unit	Init: 5 Literature of Sanskrit and writing						
	Examination and Evaluation Pattern: It include both internal evaluation (30 marks) comprising two						
	sessional exams/ assignments/ quiz/ seminar presentation etc. and external evaluation (70 marks)						
	h is mainly end semester examination.						
Text	Books:						
1 "	"Abhyaspustakam" – Dr.Vishwas, Samskrita-Bharti Publication, New Delhi						
2 "	"Teach Yourself Sanskrit" Prathama Deeksha-VempatiKutumbshastri, Rashtriya Sanskrit Sansthanam,						
	New Delhi Publication						
Refe	Reference Books						
1 "I	"India's Glorious Scientific Tradition" Suresh Soni, Ocean books (P) Ltd., New Delhi.						

Course Code		Course Title		Lecture				
PGCS134GET		VALUE EDUCATION		L	T	P		
		(Generic Electiv	re-1)					Semester: I
Version:]	Date of Approval:		4	0	0		
Scheme of Instruction	on					Scheme	of	Examination
No. of Periods	:	60 Hrs.		Ma	aximum	Score	••	100
Periods/Week	:	4		Intern	al Eval	uation	••	30
Credits	:	4	End Semester : 70					70
Instruction Mode	:	Lecture Exam Duration :			3 Hrs.			
Course Objectives:		_	_					

- Understand value of education and self- development 1.
- 2. Imbibe good values in students
- 3. Let the should know about the importance of character

- Knowledge of self-development 1.
- 2. Learn the importance of Human values
- 3. Developing the overall personality

Detailed	Contents:
Unit: 1	Values and self-development –Social values and individual attitudes. Work ethics, Indian vision of humanism. Moral and non- moral valuation. Standards and principles. Value judgments
Unit: 2	Importance of cultivation of values. Sense of duty. Devotion, Self-reliance. Confidence, Concentration. Truthfulness Cleanliness. Honesty, Humanity. Power of faith, National Unity. Patriotism. Love for nature, Discipline
Unit: 3	Personality and Behavior Development - Soul and Scientific attitude. Positive Thinking. Integrity and discipline. Punctuality, Love and Kindness. Avoid fault Thinking. Free from anger, Dignity of labour. Universal brotherhood and religious tolerance. True friendship. Happiness Vs suffering, love for truth. Aware of self-destructive habits. Association and Cooperation. Doing best for saving nature
Unit: 4	Character and Competence –Holy books vs Blind faith. Self-management and Good health. Science of reincarnation. Equality, Nonviolence, Humility.
Unit: 5	Role of Women. All religions and same message. Mind your Mind, Self-control Honesty, Studying effectively

Examination and Evaluation Pattern: It include both internal evaluation (30 marks) comprising two class sessional exams/ assignments/ quiz/ seminar presentation etc. and external evaluation (70 marks) which is mainly end semester examination.

Text Books:

Chakroborty, S.K. "Values and Ethics for organizations Theory and practice", Oxford University Press, New Delhi

Semester-2

Course Code		Course Title		Lecture				
MTCS211PCT		Machine Learni	ng	L	T P			Semester: II
Version:]	Date of Approval:		3	1	0		
Scheme of Instruction	n		Scheme of Examinati					Examination
Total Duration	:	60 Hrs.		-	Maxim	um Score	:	100
Periods/ Week	:	4	Internal Evaluation : 30					30
Credits	:	4	End Semester : 70					70
Instruction Mode	:	Lecture	Exam Duration : 3 H					

PRE-REQUISITES: Knowledge of basic data science algorithms

Course Objectives:

- 1. The course aims to learn about the purpose of Machine Learning and where it applies to the real worlds
- 2. To understand a range of machine learning algorithms along with their strengths and weaknesses
- 3. To learn methodology and tools to apply machine learning algorithms to real data and evaluate their performance.

Course Outcomes:

- 1. Ability to formulate machine learning techniques to respective problems.
- 2. How to perform the evaluation of learning algorithms and model selection.
- 3. Apply machine learning algorithms to solve problems of moderate complexity

Detailed Contents:

- Unit: 1 **Introduction to Machine Learning** Defining learning systems, Goals and applications of machine learning in different fields such as health care, banking, telecommunication, digital marketingand so on. Aspects of developing a learning system:: training and testing data, concept representation, function approximation, a general overview of supervised, semi-supervised, unsupervised learning algorithms and the usage of each algorithm.
- Unit: 2 **Basics of Python:** Introduction to Python, **Control structure and function:** if-elif-else, while loop, for loop, break and continue, Introduction to function, Types of functions, Function arguments, Lambda functions, File Handling, packages and modules.

Python Data Structures: Lists, Tuples, Dictionary, Sets, strings, **Numpy:** Numpy operation, Array and its operation, Matrix and associated operations, Linear algebra and related operations using python. Understand the advantage of using Python libraries for implementing Machine Learning models. Types of data sets.

Unit: 3 **Pandas data frame and data frame related operations on dataset :** Readingand writing data files, pandas append, insert, replace, dropping columns from dataframe, groupby and aggregate function, join operations, Exploratory data analysis, Data preparation and preprocessing (Dealing with missing value, cross-validation, classification, performance measure),

Data visualization on dataset using matplotlib and seaborn libraries: Scatter plot, Line plot, Bar plot, Histogram, Box plot, Pair plot.

Introduction to Regression - Linear, Non-linear, Simple and Multiple regression, and their applications, **Introduction to Classification technique** - KNN, ANN, Decision Trees and SVM. Pros and cons of each method, and different classification accuracy metrics.

Unit: 5 Introduction to clustering approaches - Types of clustering, including k-means clustering, Partitioned-based Clustering, Hierarchical Clustering, and Density-based Clustering.

Projection Tree Learning: Minimum Description Length Principle, Occam's rayor Learning with active queries.

Decision Tree Learning: - Minimum Description Length Principle. Occam's razor. Learning with active queries Introduction to information theory, Decision Trees, Cross Validation and Over fitting. **Support Vector Machines:** Maximum margin linear separators. Kernels for learning non-linear functions. Bayesian Learning: theory and Bayes rule. Naive Bayes learning algorithm. Parameter smoothing. Generative vs. discriminative training. Logisitic regression. Bayes nets and Markov nets for representing dependencies.

Examination and Evaluation Pattern: It includes both internal evaluation (30 marks) comprising two class sessional exams/ assignments/ quiz/ seminar presentation etc. and external evaluation (70 marks) which mainly ends semester examination.

Text Books:

Unit: 4

- 1 Tom Michel, Machine Learning, McGraw Hill, 1997
- 2 Introduction to Machine Learning with Python, Andreas C. Mueller
- 3 Mastering Python for data science, Samir Madhavan

- 1 Machine Learning Methods in the Environmental Sciences, Neural Networks, William W Hsieh, Cambridge Univ Press.
- 2 McKinney, W. (2012). Python for data analysis: Data wrangling with Pandas, NumPy, and IPython.

Course Code	Code Course Title Lecture							
MTCS260PCP		Machine Learning with Python - LAE		L	Т	P		Semester: II
Version:		Date of Approval:	Approval: 0 0 4					
Scheme of Instructio	n			Scheme of Exa				
Total Duration	:	30 Hrs.]	Maxim	ım Score	:	100
Periods/ Week	:	4		Int	ernal E	valuation	:	50
Credits	:	2	End Semester :					50
Instruction Mode	:	Practical		:	3 Hrs.			

PRE-REQUISITES: Knowledge of basic data science algorithms

Course Objectives:

- 1. The course aims at equipping participants to be able to use python programming for solving data science problems.
- 2. To study python for the implementation of data science.

Course Outcomes:

- 1. Develop an appreciation for what is involved in learning from data.
- 2. How to implement a variety of data science problems.

Detailed Contents:

Lab experiments are based on the syllabus prescribed for Machine learning algorithm using python.

- 1. Basic data structures and operations of python programming.
- 2. Write the python code for data cleaning the data (Note: Don't import repackage in python)
- 3. Write the python code for finding the Euclidean distance between two data points.
- 4.. Write a python code for handling the missing value feature in the provided data set
- 5. Implementation of k-nearest neighbours (KNN) algorithm to classify the iris data set. Print both correct and wrong predictions. Python ML library classes can be used for this problem.
- 6. Implement the classification problem, training and testing data can be used to build classification models.
- 7. Implement the class of accuracy metrics for classification: precision, recall, f1 score, accuracy score,
- 8. Implementation of K -Means algorithm.
- 9. Implementation of Decision Tree-based ID3 algorithm. Use an appropriate data set for building the decision tree and apply this knowledge to classify a new sample.
- 10. Implementation of the Random Forest algorithm.
- 11. Implementation of Naive Bayesian classifier for a sample training data set stored as a.CSV file. Compute the accuracy of the classifier, considering few test data sets.
- 12. Implementation of Simple Linear Regression using sklearn,
- 13. Implementation of regression using ordinary least squares method,
- 14. Implement the non-parametric Locally Weighted Regression algorithm in order to fit data points. Select appropriate data set for your experiment and draw graphs.
- 15. Implementation of Different multi-class SVM techniques using Binary class SVM library.
- 16. Case study: Predicting the price of pre-owned cars, Classifying personal income
- 17. Implementation of CNN using Tensorflow/Keras library and classify the Images (Note: Take your own dataset of your choice)
- 18. Implementation of Grid search and Random search using Logistic Regression.

Examination and Evaluation Pattern: It includes both internal evaluation (50 marks) comprising two class sessional exams/assignments/ quiz/ seminar presentation etc. and external evaluation (50 marks) which is mainly end semester examination.

Text Books:

- 1 Mastering python for data science, Samir Madhavan
- 2 Introduction to linear algebra by Gilbert Strang
- 3 Machine Learning using Python, U Dinesh Kumar Manaranjan Pradhan

- 1 Applied statistics and probability for engineers by Douglas Montgomery
- 2 McKinney, W. (2012). Python for data analysis: Data wrangling with Pandas, NumPy, and IPython. " O'Reilly Media,

Course Code		Course Title		Lecture				
MTCS212PCP		Internet of Things		L	T	P		Semester: II
Version:		Date of Approval:		4	0	4		
Scheme of Instruct	ion		Scheme of Examination				Examination	
No. of Periods	:	60 Hrs.		Ma	aximum	Score		100
Periods/ Week	:	4	Internal Evaluation : 30				30	
Credits	:	2	End Semester : 70				70	
Instruction Mode	:	Lecture	Exam Duration : 3 Hrs					3 Hrs.

- 1. Vision and Introduction to IoT.
- 2. Understand IoT Market perspective.
- 3. Data and Knowledge Management and use of Devices in IoT Technology.
- 4. Understand State of the Art IoT Architecture.

Course Outcomes:

- 1. be able to explain and demonstrate various components of Internet of Things (IoT);
- 2. be able to analyse the role and importance of IoT in the modern world;
- 3. be able to investigate and propose various requirements of IoT for real world applications;
- 4. be able to evaluate a variety of existing and developing architecture technologies for IoT;
- 5. be able to describe and evaluate different applications of the IoT.

Detailed	Contents:								
Unit: 1	Introduction to IoT, IOT Architecture, Sensing, Actuation, Basics of Networking, Basics of Networking Communication Protocols.								
Unit: 2	Communication Protocols, Sensor Networks, Machine-to-Machine Communications and Introduction to SDN, SDN for IoT.								
Unit: 3	Interoperability in IoT, Introduction to Arduino Programming, IoT development tools/platforms, Integration of Sensors and Actuators with Arduino, Introduction to Raspberry Pi, Implementation of IoT with Raspberry Pi.								
Unit: 4	IOT based Cloud Computing Sensor-Cloud Fog Computing Smart Cities and								
Unit: 5	IOT Based Connected Vehicles, Smart Grid, Industrial IoT. Applications of IOT, Case Study: Agriculture, Healthcare, Activity Monitoring, Implementation of IoT concepts.								
exams/ a	tion and Evaluation Pattern: It include both internal evaluation (30 marks) comprising two class sessional ssignments/ quiz/ seminar presentation etc. and external evaluation (70 marks) which is mainly end examination.								
Text Book	5:								
1 Interr	net of Things: A Hands-on Approach", by Arshdeep Bahga and Vijay Madisetti (Universities Press).								
	nternet of Things: Enabling Technologies, Platforms, and Use Cases, by Pethuru Raj and Anupama C. Raman Press).								
Reference	e Books:								
1 Buyya	Buyya, R., & Dastjerdi, A. V. (Eds.). (2016). Internet of Things: Principles and paradigms. Elsevier.								
	Vijay Madisetti and ArshdeepBahga, "Internet of Things (A Hands-on-Approach)", 1st Francis daCosta, "Rethinking the Internet of Things: A Scalable Approach to Connecting everything", 1st Edition, Apress Publications, 2013.								

Course Code		Course Title	;		Lecture				
MTCS261PCP		Internet of Things Lab		L	T	P		Semester: II	
Version:		Date of Approval:		0	0	4			
Scheme of Instruct	ion			Scheme of Examination				Examination	
No. of Periods		60 Hrs.		Ma	aximum	Score	:	100	
Periods/ Week	:	4	Internal Evaluation : 50					50	
Credits	:	2	End Semester : 50					50	
Instruction Mode	:	Lecture	Exam Duration : 3 Hrs.						

- 2. Understanding IoT and the role of the Cloud in IoT
- 3. Understanding IoT development platforms like Arduino, Raspberry Pi.
- 4. Understanding IoT Sensors and Thingspeak.

Course Outcomes:

A student passing this course should be able to:

- 1. Understand core the concept of IoT development.
- 2. Understand the concept of Sensors, actuators and cloud.

Detailed Contents:

- 1. Study and Install IDE of Arduino and different types of Arduino.
- 2. Write program using Arduino IDE for Blink LED.
- 3. Write Program for RGB LED using Arduino.
- 4. Study the Temperature sensor and Write Program for monitor temperature using Arduino.
- 5. Study and Implement RFID, NFC using Arduino.
- 6. Study and implement MQTT protocol using Arduino.
- 7. Study and Configure Raspberry Pi.
- 8. WAP for LED blink using Raspberry Pi
- 9. Study and Implement Zigbee Protocol using Arduino / Raspberry Pi.
- 10. To understand what is cloud, its importance, usage, services and types of Cloud.
- 11.To familiarize with ThingSpeak and understand the procedure of creation of a Channel over ThingSpeak.
- 12. To upload DHT11 sensor data to ThingSpeak channel through Raspberry pi2.
- 13.To upload Light sensor (TSL) data to ThingSpeak channel through Raspberry pi2
- 14. To read Light Sensor data from ThingSpeak channel and store it into database through Raspberry pi2.

Examination and Evaluation Pattern: It include both internal evaluation (50 marks) comprising two class sessional exams/assignments/quiz/seminar presentation etc. and external evaluation (50 marks) which is mainly end semester examination.

Text Books:

- Bahga, A., & Madisetti, V. (2014). Internet of Things: A hands-on approach. Vpt.
- Veneri, G., & Capasso, A. (2018). Hands-on Industrial Internet of Things: Create a Powerful Industrial IoT Infrastructure Using Industry 4.0. Packt Publishing Ltd.

- Seneviratne, P. (2018). Hands-On Internet of Things with Blynk: Build on the power of Blynk to configure smart devices and build exciting IOT projects. Packt Publishing Ltd.
- ² Ziemann, V. (2018). A hands-on course in sensors using the Arduino and Raspberry Pi. CRC Press.

Course Code		Course Title	!	Lecture				
MTCS211PET			Blockchain Technology (Elective-3)		T	P		Semester: II
Version:	1	Date of Approval:		4	0	0		
Scheme of Instruction						Examination		
No. of Periods	:	60 Hrs.		Ma	aximum	Score	:	100
Periods/ Week	:	4		Intern	ıal Evalı	uation		30
Credits	:	4	End Semester : 70					70
Instruction Mode	:	Lecture	Exam Duration : 3 Hrs.					3 Hrs.
0 011 11								

- 1. To understand the function of Blockchain as a method of securing distributed ledgers.
- To familiarise the functional/operational aspects of cryptocurrency ecosystem.
- To familiarise about wallets and learn their utilization of wallet during transaction. 2.
- To understand that how to write and apply the Smart Contracts.
- To understand the concept of Hyperledger.

Course Outcomes:

- To be able to implement the blockchain
- To be able to implement the smart contracts on Ethereum platform.
- To be able to implement the use cases on Hyperledger.
- 4. To be able to identify the major research challenges and technical gaps existing between theory and practice

in Blockchain **Detailed Contents:** Introduction to Cryptography, Introduction to graph, ring and field, prime and relative prime numbers, modular arithmetic, Fermat's and Euler's theorem, Euclid's Algorithm, RSA algorithm, Unit: 1 Diffie-Hellman key exchange algorithm, ElGamal Encryption, Elliptic curve cryptography, SHA 256, Digital Signature, Zero Knowledge Proof (ZKP) Introduction from barter system to Cryptocurrency, fundamental of Blockchain, Block structure, Genesis Block, Orphaned Blocks, Stale Block, Uncle Block, Distributed Ledger Technology (DLT), peer-to- peer network, Merkle Tree, Lifecycle of Blockchain, Evolutions of Blockchain, Fork, Unit: 2 double spending money, Transactions and UTXO's, Types of Blockchain, Need of Blockchain, Benefits of Blockchain. Build the Blockchain, Chain validation, Create the Blockchain Network, Mining pools, Mining, Difficulty Level, Current Target, Nonce, how miners picks transactions, Work of mempools Unit: 3 work, 51% attack. Consensus Algorithms: Proof of Work (PoW), Asynchronous Byzantine Agreement, Proof of Stake (PoS), Hybrid models (PoW + PoS), DPoS. Wallets, Types of wallets-Hardware, Software, Paper, Web, Desktop. Ethereum - Ethereum network, Ethereum Virtual Machine (EVM), Wallets for Ethereum, Solidity - Smart Contracts, Truffle, Web3, some attacks on smart contracts, Design and issue Unit: 4 Cryptocurrency ICO, Mining, Gas - Transactional Fee & Incentivisations, DApps, Decentralized Autonomous Organizations (DAO). Implement the use case of supply chain on Ethereum. Introduction to Hyperledger, What is Hyperledger, Why Hyperledger, Where can Hyperledger be used, Hyperledger Architecture, Membership, Blockchain, Transaction, Chaincode, Unit: 5 Hyperledger Fabric, Features of Hyperledger, Fabric Installation of prerequisite, Architecture of Hyperledger Fabric, Transaction, Ledger, Nodes, Peer, Endorser, Ordering Nodes, Channels, Certificate Authority, Transaction Flow. Implement the use case of supply chain on Hyperledger.

Examination and Evaluation Pattern: It include both internal evaluation (30 marks) comprising two class sessional exams/ assignments/quiz/ seminar presentation etc. and external evaluation (70 marks) which is mainly end semester examination.

Text Books:

- Mastering Blockchain, Imran Bashir, Packt Publishing
- Bitcoin and Cryptocurrency Technologies, Arvind Narayanan, Joseph Bonneau, Edward Felten, Andrew Miller, Steven Goldfeder, Princeton University Press. https://bitcoinbook.cs.princeton.edu/

- Grokking Bitcoin, Kalle Rosenbaum, Manning Publications. http://rosenbaum.se/book/grokking-bitcoin.html
- Blockchain Basics, Daniel Drescher, Apress Publicationhttp://vlabs.iitb.ac.in/vlabsdev/labs/blockchain/labs/index.php

Course Code		Course Title			Lectur				
MTCS212PET		Compilers for High Performance Computing (Elective-3)			Т	P		Semester: II	
Version:]	Date of Approval:	4 0						
Scheme of Instructi	on			Scheme of Examination				Examination	
No. of Periods	:	60 Hrs.		Ma	ıximum	Score		100	
Periods/ Week	:	4	Internal Evaluation :				••	30	
Credits	:	4	End Semester : 70				70		
Instruction Mode	:	Lecture	Exam Duration : 3 Hrs.						

- 1. To introduce structure of compilers and high performance compiler design
- 2. To understand the Concepts of Data Dependance in compilation
- 3. To consider concurrency analysis in translation
- 4. To understand cache coherence and parallel loops in compilers

Course Outcomes:

After completion of course, students would be

- 1. Familiar with the structure of compiler.
- 2. Parallel loops, data dependency and exception handling and debugging in compiler.

Unit: 1 High Performance Systems, Structure of a Compiler, Programming Language Features, Languages for High Performance, Data Dependence: Data Dependence in Loops, Data Dependence in Conditionals, Data Dependence in Parallel Loops, Program Dependence Graph. Scalar Analysis with Factored Use-Def Chains: Constructing Factored UseDef Chains, FUD Chains for Arrays, Induction Variables Using FUD Chains, Constant Propagation

- FUD Chains for Arrays, Induction Variables Using FUD Chains, Constant Propagation with FUD Chains, Data Dependence for Scalars. Data Dependence Analysis for Arrays, Array Region Analysis, Pointer Analysis, I/O Dependence, Procedure Calls, Interprocedural Analysis.

 Loop Restructuring: Simple Transformations, Loop Fusion, Loop Fission, Loop
- Reversal, Loop Interchanging, Loop Skewing, Linear Loop Transformations, Strip-Unit: 3 Mining, Loop Tiling, Other Loop Transformations, and Inter-procedural Transformations, Optimizing for Locality: Single Reference to Each Array, Multiple References, General Tiling, Fission and Fusion for Locality.
- Unit: 4

 Concurrency Analysis: Concurrency from Sequential Loops, Concurrency from Parallel
 Loops, Nested Loops, Round off Error, Exceptions and Debuggers. Vector Analysis:
 Vector Code, Vector Code from Sequential Loops, Vector Code from For all Loops,
 Nested Loops, Round off Error, Exceptions, and Debuggers, Multi-vector Computers.

 Message-Passing Machines: SIMD Machines, MIMD Machines, Data Layout, Parallel

Unit: 5

Message-Passing Machines: SIMD Machines, MIMD Machines, Data Layout, Parallel Code for Array Assignment, Remote Data Access, Automatic Data Layout, Multiple Array Assignments, Scalable Shared-Memory Machines: Global Cache Coherence, Local Cache Coherence, Latency Tolerant Machines. Recent trends in compiler design for high performance computing and message passing machines and scalable shared memory machine.

Examination and Evaluation Pattern: It include both internal evaluation (30 marks) comprising two class sessional exams/assignments/quiz/seminar presentation etc. and external evaluation (70 marks) which is mainly end semester examination.

Text Books:

- Michael Wolfe, High-Performance Compilers for Parallel Computing, Pearson
- 2 Keith Cooper, Linda Torczon, Engineering: A Compiler, MK Publishers

- 1 Robert Robey and Yuliana Zamora, Parallel and High Performance Computing, Manning Publications
- Randy Allen and Ken Kennedy, Optimizing Compilers for modern architectures, MK Publishers

Course	Code		Course Title			Lectu	re		
MTCS2			Distributed Comp	outing	L	T	P		Semester II
			(Elective-3)	8					Semester ii
Version:		I	Date of Approval:		4	0	0		
Scheme of		n						_	Examination
No. of Perio		:	60 Hrs.				Score	_	100
Periods/W		:	4				uation	:	30
Credits Instruction		:	Lecture				mester iration	1:	70 3 Hrs.
Course Obj		•	Lecture		E	Aaiii Di	ii atioii	١.	3 111 3.
		pts	related to distributed computing	systems.					
			nce and flexibility issues related to		isions.				
3. To expose	e students	to	current literature in distributed s	ystems.					
Course Out									
			ge of the basic elements and conc			system	techno	logie	es.
 Demonstrate knowledge of the core architectural aspects of distributed systems. Design and implement distributed applications. 									
J. Design at			ization of Distributed Syste	ms: Rasourca sh	aring	and th	م/\\ م	h C	hallenges
					_				_
Unit: 1			ural models, Fundamental N						
	System: Limitation of Distributed system, Logical clocks, Lamport's & vectors logical								
	clocks.								
	Concept	ts	in Message Passing Syst	ems: Message	Orde	ring,	Causa	Ιo	rdering of
	message	es	, global state, and termina	ation detection.	Distri	ibuted	Mut	ual	Exclusion:
Unit: 2			ion of distributed mutual						
			sed and non-token based al	•			iviac	uu.	exclusion,
			d Deadlocks: Introduction,		tion a	and R	ecove	rv -	- Deadlock
Unit: 3			with one resource of each					•	
Ullit. J				• •	•			OI	cacii type,
		•	rom deadlock; Deadlock Av	-					
			d File system design; Real	-	-				
Unit: 4	Time Op	рe	rating Systems, Concepts o	f scheduling, Re	al tim	e Me	mory	Ma	nagement.
	Recover	ſy	in Concurrent systems, obta	aining consistent	t Chec	kpoin	ts, Re	cov	ery.
		_	d Transactions, Commit	_		-			
Unit: 5	protoco				ntrol:		nsacti		_
	transactions, Locks, Optimistic Concurrency control, Timestamp ordering.								
Text Book			· •	•		·			
		ept	s in Operating Systems, M Singl	nal, N G Shivarathri	i, Tata	McGra	w-Hill	Edi	tion.
² Coulouris, Dollimore, Kindberg, "Distributed System: Concepts and Design", Pearson Ed.									
Reference	Books:					·	·		

Distributed Systems - Principles and Paradigms, A.S. Tanenbaum and M.V. Steen, Pearson Education
 Distributed Computing, S.Mahajan and S.Shah, Oxford University Press

Course Code		Course Title	Course Title Lecture			re		
MTCS214PET		Natural Language Processing			T	P		Semester:
		(Elective-3)						II
Version:		Date of Approval:	4 1 0					
Scheme of Instru	ıct	ion		Scheme of Examination				amination
No. of Periods	:	60 Hrs.		Maxi	mum S	Score	:	100
Periods/ Week	:	4	Int	ternal	Evalua	ation	••	30
Credits	:	4	End Semester : 70					70
Instruction	:	Lecture	Exam Duration : 3 Hrs.					3 Hrs.
Mode								

- 1. To understand natural language processing and to learn how to apply basic algorithms in this field.
- 2. To get acquainted with the algorithmic description of the main language levels: morphology, syntax, semantics, and pragmatics, as well as the resources of natural language data corpora.
- 3. To conceive basics of knowledge representation, inference, and relations to the artificial intelligence.

Course Outcomes: At the end of the course student will be able to:

- 1. The students will get acquainted with natural language processing and learn how to apply basic algorithms in this field.
- 2. They will understand the algorithmic description of the main language levels: morphology, syntax, semantics, and pragmatics, as well as the resources of natural language processing.
- 3. They will also grasp basics of knowledge representation, inference, and relations to the artificial intelligence.

Detailed Contents:

	Introduction: Introduction to the Morphology, Syntax, Semantics by linking the
Unit: 1	"linguistics view" (computational linguistics) with the "artificial intelligence view"
	(natural language processing).
	Morphology: Analysis and generation of language on word level: e.g. problems with
Unit: 2	compounding and idiomatic phrases, homophonous strings as well as loan words and
Ullit. Z	their processing using e.g. finite state automata as well as semantic networks.
	Ambiguities in words like "pen" and "pipe", but will also discuss some complex strings.
	Syntax: Analysis and generation of language on phrasal and sentence level: e.g.
	applications such as machine translation and grammar checking and the processing
Unit: 3	using phase structure grammars as well as unification-based formalisms and relating
	those formalisms to recursive transition networks (RTNs) as well as augmented
	transition networks (ATNs).
	Semantics: Language ambiguities on the level of "meaning": represented by case
Unit: 4	structures and conceptual dependency structures. We will look at famous utterances
UIIII. 4	such as: Colourless green ideas sleep furiously. And will discuss why the machine runs
	into problems during analysis, and how these problems can be overcome.
Unit: 5	Applications of NLP: Machine Translation, Grammar Checkers Dictation, Automatic
oiiit. 3	Document Generation, NL Interfaces.

Examination and Evaluation Pattern: It include both internal evaluation (30 marks) comprising two class sessional exams/ assignments/ quiz/ seminar presentation etc. and external evaluation (70 marks) which is mainly end semester examination.

Text Books:

- Daniel Jurafsky, James H. Martin "Speech and Language Processing" Second Edition, Prentice Hall, 2008.
- 2 Chris Manning and Hinrich Schütze, "Foundations of Statistical Natural Language Processing", MIT Press. Cambridge, MA: May 1999.

- 1 Allen, James, Natural Language Understanding, Second Edition, Benjamin/Cumming, 1995.
- 2 Charniack, Eugene, Statistical Language Learning, MIT Press, 1993.

				ı			1		
Course Code		Course Title		Lecture			4		
MTCS215PET		Quantum Computing (Elective-3)		L	Т	P	Semester: II		
Version:		Date of Approval:		4	0	0	=		
	Instruction					Scheme (of Examination		
No. of Perio		60 Hrs.			aximum		: 100		
Periods/ W	eek :	4			nal Eval		: 30		
Credits	:	4	End Semester : 70						
Instruction Mode : Lecture Exam Duration : 3 Hrs.						: 3 Hrs.			
1. The cour	Course Objectives: 1. The course will provide an insight of basic of quantum physics from a computer scientist's perspective, and how it								
		l understand the philosophical impli	cations of quantum c	omputi	ng				
Course Out									
1. Knowle	edge of Vect	or spaces, Matrices, Quantum state, I	Density operator and	l Quanti	ım Mea	suremen	theory.		
Detailed (Contents:								
	Qubit 8	Quantum States: The Qu	bit, Vector Spa	ices.	Linear	Comb	ination Of		
	Vectors, Uniqueness of a spanning set, basis & dimensions, inner Products,								
Unit: 1									
01110. 2	orthonormality, gram-schmidt orthogonalization, bra-ket formalism, the Cauchy-								
	schwarez and triangle Inequalities.								
			The Dauli On	onoto	40 Ou	ton Duc	dusta The		
		s & Operators: Observables	•						
	Closure Relation, Representation of operators using matrices, outer products &								
	matrix representation, matrix representation of operators in two dimensional								
Unit: 2	spaces, Pauli Matrix, Hermitian unitary and normal operator, Eigen values &								
	Eigen V	Vectors, Spectral Decompo	osition, Trace	of an	1 оре	erator,	important		
	properties of Trace, Expectation Value of Operator, Projection Operator,								
	Positive Operators,								
		tator Algebra, Heisenberg ı	ıncertainty prir	nciple	. pola	r decor	nposition &		
Unit: 3 singular values, Postulates of Quantum Mechanics.						inposition a			
	Tensor	Products: Representing (Composite Stat	es in	Qua	ntum	Mechanics,		
	Computing inner products, Tensor products of column vectors, operators and								
	tensor products of Matrices.								
Unit: 4	Density Operator: Density Operator of Pure & Mix state, Key Properties,								
	Characterizing Mixed State, Practical Trace & Reduce Density Operator,								
	Density Operator & Bloch Vector.								
	Quantum Measurement Theory: Distinguishing Quantum states & Measures,								
Unit: 5	Projective Measurements, Measurement on Composite systems, Generalized								
	Measurements, Positive Operator- Valued Measures. Recent trends in								
	Quantum Computing Research, Quantum Computing Applications								
	of Genetic Programming.								
Examination and Evaluation Pattern: It include both internal evaluation (30 marks) comprising two class sessional									
exams/ assignments/ quiz/ seminar presentation etc. and external evaluation (70 marks) which is mainly end									
semester examination. Text Books:									
Quantum computing without magic by zuzisiaw megicki									
Quantum computing Explained by DAVID Mc MAHON									
Reference Books: 1 Overstyn Compyter Science By Marce Langagorta Leffrey Helmann									
Quantum computer Science by Marco Lanzagoria, Jenney Ominami									
² An Intr	oduction to	Quantum Computing Phillip Kaye, R	aymond Laflamme, N	Michele	Mosca.				

C C. 1.			C Wil			*				
Course Code			Course Title		Lecture L T P			_		
MTCS221PET			Advanced Operating System		L	1	r	SEMESTER II		
			(Elective-4)							
Version:			Date of Approval:		4	0	0	47		
Scheme of Instructio										
No. of Periods		<u>:</u>	60 Hrs. 4					: 100		
Credits	Periods/ Week Credits		4	End Semester : 70						
	Instruction Mode		Lecture	Exam Duration : 3 Hr						
Course Obje				Brain Bardron 1 0 mo						
		yst	ems papers that shaped the field.							
			al materials to others both orally a							
		aco	curacy and precision with which yo	u express ideas.						
Course Outc			6.1							
			g of design issues associated with o ss management concepts including		nizatio	n and	daadlock	rc.		
			ous types of operating systems incl		mzauc	ni, and	ueaulock			
					s and	threa	ds nro	cess model		
	Introduction: Operating system concept - processes and threads, process model,									
i iiniri i i -	process creation, process termination, process hierarchies, and process states,									
	Implementation of processes, Threads- Thread model, thread usage,									
	Implementation of threads in user space and kernel, Hybrid implementations									
I	Inter Process Communication: Race conditions, critical regions, Mutual									
,, ., ₂ I	Exclusion with busy waiting, sleep and wakeup, Semaphores, Mutexes,									
Unit: 2	Monito	onitors, Message passing; Schedulingscheduling in batch systems, Interactive								
		tems, Real time systems, Thread scheduling.								
	Deadlocks: Introduction, Deadlock Detection and Recovery – Deadlock									
		etection with one resource of each type, with multiple resource of each type,								
	recovery from deadlock; Deadlock Avoidance, Deadlock Prevention.									
I	Memory and Device Management: Introduction, Swapping, Paging, Virtual									
r	memory - Demand paging, page replacement Algorithms; File System									
Unit: 4	Management- Organization of File System, File Permissions, MS DOS and UNIX									
	file system case studies, NTFS; Device Management- I/O Channels, Interrupts									
	and Interrupt Handling, Types of device allocation.									
	Distributed Operating Systems: Distributed operating system concept –									
	Architectures of Distributed Systems, Distributed Mutual Exclusion, Distributed									
י ביוחודי	Deadlock detection, Agreement protocols, Threads, processor Allocation,									
	Allocation algorithms , Distributed File system design; Real Time Operating									
	Systems: Introduction to Real Time Operating Systems, Concepts of scheduling,									
	Real time Memory Management.									
Text Books:										
1 Mukesh										
2 Andrew S. Tanenbaum, "Modern Operating Systems", Pearson Education, 2nd Edition, 2006										
Reference Books:										
1 Andrew S. Tanenbaum, "Distributed Operating Systems", Pearson Education, 2ndEdition, 2001.										
2 Pradeep K. Sinha, "Distributed Operating Systems and concepts", PHI, First Edition, 2002										

Course Code		Course Title		Lecture					
MTCS222PET		Digital Image Processing (Elective-4)		L	Т	P		Semester: II	
Version:		Date of Approval:		4	1	0			
Scheme of Instruction			Scheme of Examination						
No. of Periods	:	60 Hrs.	Maximum Score : 10			100			
Periods/ Week	:	4	Internal Evaluation :			30			
Credits	:	4	End Semester :			70			
Instruction Mode	ode : Lecture			Exam Duration			:	3 Hrs.	

Prerequisite(s): It is expected that the students have done BTCS615PET course

Course Objectives:

- 1. Imparts knowledge in the area of image and image processing.
- 2. Understand fundamentals of digital image processing.
- 3. Provide knowledge of the applications of the theories taught in Digital Image Processing. This will be achieved through the project and some selected lab sessions.

Course Outcomes:

Detailed Contents:

- 1. Understand Basics of Image formation and transformation using sampling and quantization.
- 2. Understand different types signal processing techniques used for image sharpening and smoothing.
- 3. Perform and apply compression and coding techniques used for image data.

Detaneu	ontens.					
	Introduction to Image Processing: Image formation, image geometry perspective					
Unit: 1	and other transformation, stereo imaging elements of visual perception. Digital					
	Image-sampling and quantization serial & parallel Image processing.					
Unit: 2	Signal Processing: Signal Processing - Fourier, Walsh-Hadmard discrete cosine and					
	Hotelling transforms and their properties, filters, correlators and convolvers. Image					
	enhancement-Contrast modification, Histogram specification, smoothing,					
	sharpening, frequency domain enhancement, pseudo-colour					
	Image Restoration: Image Restoration-Constrained and unconstrained restoration					
Unit: 3	Wiener filter, motion blur remover, geometric and radiometric correction Image					
	data compression-Huffman and other codes transform compression, predictive					
	compression two tone Image compression, block coding, run length coding, and					
	contour coding.					
Unit: 4	Segmentation Techniques: Segmentation Techniques-thresh holding approaches,					
	region growing, relaxation, line and edge detection approaches, edge linking,					
	supervised and unsupervised classification techniques, remotely sensed image					
	analysis and applications.					
	Shape Analysis: Shape Analysis – Gestalt principles, shape number, moment					
TT '. 7	Fourier and other shape descriptors, Skelton detection, Hough transform, topological					
Unit: 5	and texture analysis, shape matching. Practical Applications – Finger print					
	classification, signature verification, text recognition, map understanding, bio-					
	logical cell classification.					
Examination and Evaluation Pattern: It include both internal evaluation (30 marks) comprising two class sessional exams/assignments/ quiz/ seminar presentation etc. and external evaluation (70 marks) which is mainly						
end semester examination.						
Text Boo						
	lez and Wood, "Digital Image Processing", Addison Wesley, 1993.					
2 Anil K.Jain, "Fundamental of Image Processing", Prentice Hall of India.						
Reference Books:						
	1 Rosenfeld and Kak, "Digital Picture Processing" vol.I&vol.II, Academic, 1982					
2 Ballar	2 Ballard and Brown, "Computer Vision", Prentice Hall, 1982					

Course Code	Course Title		Lecture					
MTCS223PET	A	Advanced Wireless & Mobile Networks		L	T	P		Semester: II
		(Elective-4)						semester. II
Version:	Da	ate of Approval:		3	0	0		
Scheme of Instruction				Scheme	of	Examination		
No. of Periods	••	60 Hrs.	Maximum Score : 100				100	
Periods/ Week	••	4	Internal Evaluation : 30				30	
Credits		3	End Semester : 70				70	
Instruction Mode	••	Lecture		E	xam Du	ration	••	3 Hrs.

- 1. The students should get familiar with the wireless/mobile market and the future needs and challenges.
- 2. To get familiar with key concepts of wireless networks, standards, technologies and their basic operations.
- 3. To learn how to design and analyse various medium access.
- 4. To learn how to evaluate MAC and network protocols using network simulation software tools.
- 5. The students should get familiar with the wireless/mobile market and the future needs and challenges.

Course Outcomes:

After completion of course, students would be:

- 1. Demonstrate advanced knowledge of networking and wireless networking and understand various types of wireless networks, standards, operations and use cases.
- 2. Be able to design WLAN, WPAN, WWAN, Cellular based upon underlying propagation and performance analysis.
- 3. Demonstrate knowledge of protocols used in wireless networks and learn simulating wireless networks.
- 4. Design wireless networks exploring trade-offs between wire line and wireless links.
- 5. Develop mobile applications to solve some of the real world problems.

Detailed Contents:

	Introduction: Wireless Networking Trends, Key Wireless Physical Layer Concepts,								
	Multiple Access Technologies -CDMA, FDMA, TDMA, Spread Spectrum technologies,								
	Frequency reuse, Radio Propagation and Modelling, Challenges in Mobile Computing:								
Unit: 1	Resource poorness, Bandwidth, energy etc.								
Ullit: 1	Wireless Local Area Networks: IEEE 802.11 Wireless LANs Physical & MAC layer,								
	802.11 MAC Modes (DCF & PCF) IEEE 802.11 standards, Architecture & protocols,								
	Infrastructure vs. Adhoc Modes, Hidden Node & Exposed Terminal Problem, Problems,								
	Fading Effects in Indoor and outdoor WLANs, WLAN Deployment issues.								
	Wireless Cellular Networks: 1G and 2G, 2.5G, 3G, and 4G, Mobile IPv4, Mobile IPv6,								
Unit: 2	TCP over Wireless Networks, Cellular architecture, Frequency reuse, Channel								
Ullit: 2	assignment strategies, Handoff strategies, Interference and system capacity, Improving								
	coverage and capacity in cellular systems, Spread spectrum Technologies.								
	WiMAX (Physical layer, Media access control, Mobility and Networking), IEEE 802.22								
	Wireless Regional Area Networks, IEEE 802.21 Media Independent Handover								
Unit: 3	Overview								
	Wireless Sensor Networks: Introduction, Application, Physical, MAC layer and								
	Network Layer, Power Management, Tiny OS Overview.								
	Wireless PANs: Bluetooth AND Zigbee, Introduction to Wireless Sensors.								
Unit: 4	Security: Security in wireless Networks Vulnerabilities, Security techniques, Wi-Fi								
	Security, DoS in wireless communication.								
Unit: 5	Advanced Topics: IEEE 802.11x and IEEE 802.11i standards, Introduction to								
UIIIL: 5	Vehicular Adhoc Networks, Opportunistic Networks.								

Examination and Evaluation Pattern: It include both internal evaluation (30 marks) comprising two class sessional exams/ assignments/ quiz/ seminar presentation etc. and external evaluation (70 marks) which is mainly end semester examination.

Text Books:

- 1 Schiller J., Mobile Communications, Addison Wesley 2000.
- 2 Stallings W., Wireless Communications and Networks, Pearson Education 2005.

- 1 Stojmenic Ivan, Handbook of Wireless Networks and Mobile Computing, John Wiley and Sons Inc 2002.
- 2 Yi Bing Lin and Imrich Chlamtac, Wireless and Mobile Network Architectures, John Wiley and Sons Inc 2000.

Course Code		Course Title	!	Lecture				
MTCS224PET		Mobile Applications an	d Services	L	T	P		Semester:
		(Elective-4)						II
Version:		Date of Approval:		4	0	0		
Scheme of Instr	uct	ion	Scheme of Examinat			amination		
No. of Periods	:	60 Hrs.		Maximum Score : 100				100
Periods/ Week	:	4	Internal Evaluation :				:	30
Credits	:	4	End Semester : 70				70	
Instruction	:	Lecture	Exam Duration : 3 H				3 Hrs.	
Mode								

- 4. This course presents the three main mobile platforms and their ecosystems, namely Android, iOS, and PhoneGap/WebOS.
- 5. It explores emerging technologies and tools used to design and implement feature-rich mobile applications for smartphones and tablets.
- 6. It also takes into account both the technical constraints relative to storage capacity, processing capacity, display screen, communication interfaces, and the user interface, context and profile.

Course Outcomes:

At the end of the course student will be able to:

- 1. Identify the target platform and users and be able to define and sketch a mobile application
- 2. Understand the fundamentals, frameworks, and development lifecycle of mobile application platforms including iOS, Android, and PhoneGap
- 3. Design and develop a mobile application prototype in one of the platforms (challenge project)

Detaile	Detailed Contents:						
	Introduction: Introduction to Mobile Computing, Introduction to Android Development						
Unit: 1	Environment, Factors in Developing Mobile Applications, Mobile Software Engineering,						
	Frameworks and Tools, Generic UI Development Android User						
	More on Uis: VUIs and Mobile Apps, Text-to-Speech Techniques, Designing the Right UI,						
Unit: 2	Multichannel and Multimodal Uis, Storing and Retrieving Data, Synchronization and						
Ullit. Z	Replication of Mobile Data, Getting the Model Right, Android Storing and Retrieving						
	Data, Working with a Content Provider						
	Communications via Network and the Web: State Machine, Correct Communications						
Unit: 3	Model, Android Networking and Web, Telephony Deciding Scope of an App, Wireless						
	Connectivity and Mobile Apps, Android Telephony						
	Notifications and Alarms: Performance, Performance and Memory Management,						
	Android Notifications and Alarms, Graphics, Performance and Multithreading, Graphics						
Unit: 4	and UI Performance, Android Graphics						
	Packaging and Deploying, Performance Best Practices, Android Field Service App,						
	Location Mobility and Location Based Android Services						
	Multimedia: Mobile Agents and Peer-to-Peer Architecture, Android Multimedia						
Unit: 5	Platforms and Additional Issues: Development Process, Architecture, Design,						
Oille. 3	Technology Selection, Mobile App Development Hurdles, Testing, Security and Hacking,						
	Active Transactions, More on Security, Hacking Android						

Examination and Evaluation Pattern: It include both internal evaluation (30 marks) comprising two class sessional exams/ assignments/ quiz/ seminar presentation etc. and external evaluation (70 marks) which is mainly end semester examination.

Text Books:

- 1 Wei-Meng Lee, Beginning Android™ 4 Application Development, 2012 by John Wiley & Sons.
- Hands-On Swift 5 Microservices Development, Build microservices for mobile and web applications using Swift 5 and Vapor 4, Ralph Kuepper, Tanner Nelson

- 1 | Xamarin Mobile Application Development: Cross-Platform C# and Xamarin.Forms Fundamentals
- 2 Android Programming: The Big Nerd Ranch Guide (3rd Edition)

Course Code		Course Title		Lecture				
MTCS225PET		GPU Computing		L	T	P		Semester: II
		(Elective-4	l)					Schiester. II
Version:		Date of Approval:		4	0	0		
Scheme of Instructi	ction Scheme of Examination					Examination		
No. of Periods	••	60 Hrs.		Maximum Score : 100			100	
Periods/ Week	••	4	Internal Evaluation					30
Credits	••	4	End Semester : 70				70	
Instruction Mode	:	Lecture		Exam Duration : 3				

2. To learn parallel programming with Graphics Processing Units (GPUs).

Course Outcomes:

3. Students would learn concepts in parallel programming, implementation of programs on GPUs, debugging and profiling parallel programs.

Detailed	Contents:						
	Introduction: History, Graphics Processors, Graphics Processing Units, GPGPUs. Clock						
	speeds, CPU / GPU comparisons, Heterogeneity, Accelerators, Parallel programming,						
Unit: 1	CUDA OpenCL / OpenACC, Hello World Computation Kernels, Launch parameters,						
	Thread hierarchy, Warps / Wavefronts, Thread blocks / Workgroups, Streaming						
	multiprocessors, 1D / 2D / 3D thread mapping, Device properties, Simple Programs						
	Memory: Memory hierarchy, DRAM / global, local / shared, private / local, textures,						
11.4.2	Constant Memory, Pointers, Parameter Passing, Arrays and dynamic						
Unit: 2	Memory, Multi-dimensional Arrays, Memory Allocation, Memory copying across						
	devices, Programs with matrices, Performance evaluation with different memories						
	Synchronization: Memory Consistency, Barriers (local versus global), Atomics,						
	Memory fence. Prefix sum, Reduction. Programs for concurrent Data Structures such						
Unit: 3	as Worklists, Linked-lists. Synchronization across CPU and GPU						
	Functions: Device functions, Host functions, Kernels functions, Using libraries (such as						
	Thrust), and developing libraries.						
	Support: Debugging GPU Programs. Profiling, Profile tools, Performance aspects						
IInit. 1	Streams: Asynchronous processing, tasks, Task-dependence, Overlapped data						
Unit: 4	transfers, Default Stream, Synchronization with streams. Events, Event-based-						
	Synchronization - Overlapping data transfer and kernel execution, pitfalls.						
	Image Processing, Graph algorithms, Simulations, Deep Learning. Advanced topics:						
Unit: 5	Dynamic parallelism, Unified Virtual Memory, Multi-GPU processing, Peer access,						
	Heterogeneous processing						
Examinat	ion and Evaluation Pattern: It include both internal evaluation (30 marks) comprising two class sessional						

Examination and Evaluation Pattern: It include both internal evaluation (30 marks) comprising two class sessional exams/ assignments/ quiz/ seminar presentation etc. and external evaluation (70 marks) which is mainly end semester examination.

Te	Text Books:						
1	Programming Massively Parallel Processors: A Hands						
2	CUDA Programming: A Developer's Guide to Parallel Computing with GPUs; Shane Cook; Morgan Kaufman; 2012 (ISBN: 978						
Re	Reference Books:						

Course Code		Course Title			Lecture				
MTCS231GET		CONSTITUTION OF INDIA (Generic Elective-2)		L	T	P		Semester: II	
Version:]	Date of Approval:		4	0	0			
Scheme of Instruction	n					Scheme	of	Examination	
No. of Periods	:	60 Hrs.	Maximum Score : 100				100		
Periods/ Week		4	Internal Evaluation : 30					30	
Credits		4	End Semester : 70					70	
Instruction Mode	:	Lecture	Exam Duration : 3 Hr					3 Hrs.	

- 1. Understand the premises informing the twin themes of liberty and freedom from a civil rights perspective.
- 2. To address the growth of Indian opinion regarding modern Indian intellectuals' constitutional role and entitlement to civil and economic rights as well as the emergence of nationhood in the early years of Indian nationalism.
- 3. To address the role of socialism in India after the commencement of the Bolshevik
- 4. Revolution in 1917 and its impact on the initial drafting of the Indian Constitution.

Course Outcomes:

- 1. Discuss the growth of the demand for civil rights in India for the bulk of Indians before the arrival of Gandhi in Indian politics.
- 2. Discuss the intellectual origins of the framework of argument that informed the conceptualization of social reforms leading to revolution in India.
- 3. Discuss the circumstances surrounding the foundation of the Congress Socialist Party [CSP] under the leadership of Jawaharlal Nehru and the eventual failure of the proposal of direct elections through adult suffrage in the Indian Constitution.
- 4. Discuss the passage of the Hindu Code Bill of 1956.

Detailed Contents:

Unit: 1	History of Making of the Indian Constitution: History Drafting Committee, (Composition
Ullit: 1	& Working), Philosophy of the Indian Constitution: Preamble Salient Features
	Contours of Constitutional Rights & Duties: Fundamental Rights, Right to Equality,
Unit: 2	Right to Freedom, Right against Exploitation, Right to Freedom of Religion, Cultural and
Ullit. Z	Educational Rights, Right to Constitutional Remedies, Directive Principles of State Policy,
	Fundamental Duties.
	Organs of Governance: Parliament, Composition, Qualifications and, Disqualifications,
Unit: 3	Powers and Functions, Executive, President, Governor
	Council of Ministers, Judiciary, Appointment and Transfer of Judges, Qualifications, Powers
	and Functions
	Local Administration: District's Administration head: Role and Importance,
	Municipalities: Introduction, Mayor and role of Elected Representative, CEO of Municipal
Unit: 4	Corporation. Pachayati raj: Introduction, PRI: Zila Pachayat. Elected officials and their
UIIII. 4	roles, CEO Zila Pachayat: Position and role. Block level: Organizational Hierarchy
	(Different departments), Village level: Role of Elected and Appointed officials, Importance
	of grass root democracy
	Election Commission: Election Commission: Role and Functioning, Chief Election
Unit: 5	Commissioner and Election Commissioner, State Election Commission: Role and
	Functioning. Institute and Bodies for the welfare of SC/ST/OBC and women.

Examination and Evaluation Pattern: It include both internal evaluation (30 marks) comprising two class sessional exams/ assignments/ quiz/ seminar presentation etc. and external evaluation (70 marks) which is mainly end semester examination.

Text Books:

- The Constitution of India, 1950 (Bare Act), Government Publication.
- ² Dr. S. N. Busi, Dr. B. R. Ambedkar framing of Indian Constitution, 1st Edition, 2015.

- M. P. Jain, Indian Constitution Law, 7th Edn., Lexis Nexis, 2014.
- D.D. Basu, Introduction to the Constitution of India, Lexis Nexis, 2015.

Course Code		Course Title		Lecture					
MTCS232GET		PEDAGOGY STUDIES		L	Т	P		Semester: II	
		(Generic Electiv	re-2)						
Version:]	Date of Approval:		4	0	0			
Scheme of Instruction	Scheme of Instruction Scheme of Exam				Examination				
No. of Periods	:	60 Hrs.	Maximum Score : 100				100		
Periods/ Week	:	4	Internal Evaluation :				30		
Credits	:	4	End Semester : 70				70		
Instruction Mode	:	Lecture	Exam Duration : 3 Hrs.					3 Hrs.	

- 1. Review existing evidence on the review topic to inform programme design and policy making undertaken by the DfID, other agencies and researchers.
- 2. Identify critical evidence gaps to guide the development.

Course Outcomes:

- 1. What pedagogical practices are being used by teachers in formal and informal classrooms in developing countries?
- 2. What is the evidence on the effectiveness of these pedagogical practices, in what conditions, and with what population of learners?
- 3. How can teacher education (curriculum and practicum) and the school curriculum and guidance materials best support effective pedagogy?

Detailed Contents:

Detailed !	contents:
Unit: 1	Introduction and Methodology:: Aims and rationale, Policy background, Conceptual framework and terminology, Theories of learning, Curriculum, Teacher education. Conceptual framework, Research questions. Overview of methodology and Searching.
Unit: 2	Thematic overview: Pedagogical practices are being used by teachers in formal and informal classrooms in developing countries. Curriculum, Teacher education.
Unit: 3	Evidence on the effectiveness of pedagogical practices Methodology for the in depth stage: quality assessment of included studies. How can teacher education (curriculum and practicum) and the school curriculum and guidance materials best support effective pedagogy? Theory of change. Strength and nature of the body of evidence for effective pedagogical practices. Pedagogic theory and pedagogical approaches. Teachers' attitudes and beliefs and Pedagogic strategies.
Unit: 4	Professional development: alignment with classroom practices and follow-up support, Peer support Support from the head teacher and the community. Curriculum and assessment Barriers to learning: limited resources and large class sizes
Unit: 5	Research gaps and future directions: Research design, Contexts Pedagogy, Teacher education, Curriculum and assessment, Dissemination and research impact.

Examination and Evaluation Pattern: It include both internal evaluation (30 marks) comprising two class sessional exams/ assignments/ quiz/ seminar presentation etc. and external evaluation (70 marks) which is mainly end semester examination.

Text Books:

- Ackers I. Hardman F (2001) Classroom interaction in Kenvan primary schools. Compare. 31 (2): 245-261.
- Agrawal M (2004) Curricular reform in schools: The importance of evaluation, Journal of Curriculum

- Akyeampong K (2003) Teacher training in Ghana does it count? Multi-site teacher education research
- Akyeampong K, Lussier K, Pryor J, Westbrook J (2013) Improving teaching and learning of basic maths and

Course Code		Course Title		Lecture				
MTCS233GET		STRESS MANAGEMENT BY YOGA		L	Т	P		Semester: II
		(Generic Elective-2)						Semester. II
Version:		Date of Approval:		4	0	0		
Scheme of Instructi	on		Scheme of Examination				Examination	
No. of Periods		60 Hrs.	Maximum Score : 100				100	
Periods/ Week		4	Internal Evaluation :				••	30
Credits	:	4	End Semester : 70				70	
Instruction Mode	:	Lecture		E	xam Du	ration		3 Hrs.

- 1. To achieve overall health of body and mind
- 2. To overcome stress
 Course Outcomes:

- 1. Develop healthy mind in a healthy body thus improving social health also
- 2. Improve efficiency

Detailed	Contents:						
Unit: 1	Definitions of Eight parts of yog. (Ashtanga)						
11:4 2	Yam and Niyam. Do`s and Don't's in life. Ahinsa, satya, astheya, bramhacharya						
Unit: 2	and aparigraha						
Unit: 3	Shaucha, santosh, tapa, swadhyay, ishwarpranidhan						
Unit: 4	Asan and Pranayam, Various yog poses and their benefits for mind & body						
Unit: 5	Regularization of breathing techniques and its effects-Types of pranayam						
Examina	Examination and Evaluation Pattern: It include both internal evaluation (30 marks) comprising two						
	class sessional exams/ assignments/ quiz/ seminar presentation etc. and external evaluation (70 marks)						
which is a	which is mainly end semester examination.						

Te	Text Books:								
1	'Yogic Asanas for Group Tarining-Part-I": Janardan Swami Yogabhyasi Mandal, Nagpur								
2	"Rajayoga or conquering the Internal Nature" by Swami Vivekananda, AdvaitaAshrama (Publication								
	Department), Kolkata								
Re	Reference Books:								

Course Code		Course Title			Lectur			
MTCS234GET		PERSONALITY DEVELOPMENT THROUGH			T	P		
		LIFE ENLIGHTENMENT SKILLS						Semester: II
		(Generic Electiv	e-2)					
Version:		Date of Approval:		3	0	0		
Scheme of Instruct	ion		Scheme of Examination					Examination
No. of Periods	:	60 Hrs.		Ma	aximum	Score	••	100
Periods/ Week	:	4	Internal Evaluation				:	30
Credits	: 4			End Semester : 70				70
Instruction Mode	:	Lecture	Exam Duration : 3				3 Hrs.	

- 1. To learn to achieve the highest goal happily
- 2. To become a person with stable mind, pleasing personality and determination
- 3. To awaken wisdom in students

Course Outcomes:

- 1. Study of Shrimad-Bhagwad-Geeta will help the student in developing his personality and achieve the highest goal in life
- 2. The person who has studied Geeta will lead the nation and mankind to peace and prosperity
- 3. Study of Neetishatakam will help in developing versatile personality of students.

Detailed Contents:						
	Neetisatakam-Holistic development of personality					
	Verses- 19,20,21,22 (wisdom)					
11:4 1	Verses- 29,31,32 (pride & heroism)					
Unit: 1	Verses- 26,28,63,65 (virtue)					
	Verses- 52,53,59 (dont's)					
	Verses- 71,73,75,78 (do's)					
	Approach to day to day work and duties.					
Unit: 2	Shrimad BhagwadGeeta : Chapter 2-Verses 41, 47,48,					
	Chapter 3-Verses 13, 21, 27, 35,					
	Chapter 6-Verses 5,13,17, 23,35,					
Unit: 3	Chapter 18-Verses 45, 46, 48.					
UIIIt. 3	Statements of basic knowledge.					
	Shrimad Bhagwad Geeta: Chapter2-Verses 56, 62, 68					
Unit: 4	Chapter 12 -Verses 13, 14, 15, 16,17, 18					
OIIIt. 4	Personality of Role model. Shrimad Bhagwad Geeta:					
Unit: 5	Chapter 2-Verses 17, Chapter 3-Verses 36,37,42, Chapter 4-Verses					
011111	18, 38,39 Chapter18 - Verses 37,38,63					

Examination and Evaluation Pattern: It include both internal evaluation (30 marks) comprising two class sessional exams/ assignments/ quiz/ seminar presentation etc. and external evaluation (70 marks) which is mainly end semester examination.

Text Books:

- "Srimad Bhagavad Gita" by Swami SwarupanandaAdvaita Ashram (Publication Department), Kolkata
- Bhartrihari's Three Satakam (Niti-sringar-vairagya) by P.Gopinath, Rashtriya Sanskrit Sansthanam, New Delhi.

Semester-3

Course Code		Course Title							
MTCS311PET		Deep Learning (Elective-5)		L	Т	P		Semester: III	
Version:		Date of Approval:		4	0	0			
Scheme of Instruct	Scheme of Instruction Scheme of Examination							Examination	
No. of Periods		60 Hrs.		Ma	aximum	Score	:	100	
Periods/ Week	••	4		Interr	ıal Eval	uation	:	30	
Credits		4		End Semester : 70					
Instruction Mode	Instruction Mode : Lecture Exam Duration : 3 Hrs.						3 Hrs.		
Course Objectives:									
1. To introduce major deen learning algorithms, the problem settings, and their applications to solve real									

1. To introduce major deep learning algorithms, the problem settings, and their applications to solve real world problems.

Course Outcomes:

- 1. Identify the deep learning algorithms which are more appropriate for various types of learning tasks in various domains.
- 2. Implement deep learning algorithms and solve real-world problems.

Detailed Contents:

Detaile	u contents.
Unit: 1	History of Deep Learning, Deep Learning Success Stories, McCulloch Pitts Neuron, Thresholding Logic, Perceptrons, Perceptron Learning Algorithm and Convergence, Multilayer Perceptrons (MLPs), Representation Power of MLPs
Unit: 2	Sigmoid Neurons, Gradient Descent, Feedforward Neural Networks, Representation Power of Feedforward Neural Networks, Feedforward Neural Networks, Backpropagation, Gradient Descent (GD), Momentum Based GD, Nesterov Accelerated GD, Stochastic GD, AdaGrad, RMSProp, Adam, Eigenvalues and eigenvectors, Eigenvalue Decomposition, Basis, Principal Component Analysis and its interpretations, Singular Value Decomposition, Autoencoders and relation to PCA
Unit: 3	Regularization in autoencoders, Denoising autoencoders, Sparse autoencoders, Contractive autoencoders, Bias Variance Tradeoff, L2 regularization, Early stopping, Dataset augmentation, Parameter sharing and tying, Injecting noise at input, Ensemble methods, Dropout, Greedy Layerwise Pre-training, Better activation functions, Better weight initialization methods, Batch Normalization
Unit: 4	Learning Vectorial Representations Of Words, Convolutional Neural Networks, LeNet, AlexNet, ZF-Net, VGGNet, GoogLeNet, ResNet, Object Detection, RCNN, Fast RCNN, Faster RCNN, YOLO.
Unit: 5	Visualizing Convolutional Neural Networks, Guided Backpropagation, Deep Dream, Deep Art, Fooling Convolutional Neural Networks, Recurrent Neural Networks, Backpropagation Through Time (BPTT), Vanishing and Exploding Gradients, Truncated, BPTTGated Recurrent Units (GRUs), Long Short Term Memory (LSTM) Cells, Solving the vanidhing gradient problem with LSTMs

Examination and Evaluation Pattern: It include both internal evaluation (30 marks) comprising two class sessional exams/ assignments/ quiz/ seminar presentation etc. and external evaluation (70 marks) which is mainly end semester examination.

Text Books:

- 1 Goodfellow, I., Bengio, Y., and Courville, A., Deep Learning, MIT Press, 2016.
- 2 https://www.cse.iitm.ac.in/~miteshk/CS7015.html

- 1 Bishop, C., M., Pattern Recognition and Machine Learning, Springer, 2006.
- 2 Yegnanarayana, B., Artificial Neural Networks PHI Learning Pvt. Ltd, 2009.

Course Code		Course Title			Lectur			
MTCS312PET		Secure Software Design &Enterprise			T	P		Semester: III
	Computing (Elective-5)		ve-5)					Semester: III
Version:]	Date of Approval:	oval:			0		
Scheme of Instruction	on			Scheme of Examination				
No. of Periods	:	60 Hrs.	Maximum Score :				100	
Periods/ Week	:	4	Internal Evaluation :					30
Credits	:	4	End Semester : 70					70
Instruction Mode	:	Lecture	Exam Duration :					3 Hrs.
C Ol ' '								

- 1. To fix software flaws and bugs in various software.
- 2. To make students aware of various issues like weak random number generation, Information leakage, poor usability, and weak or no encryption on data traffic.
- 3. Techniques for successfully implementing and supporting network services on anenterprise scale and heterogeneous systems environment.
- 4. Methodologies and tools to design and develop secure software containing minimum vulnerabilities and flaws.

Course Outcomes:

- 1. Differentiate between various software vulnerabilities.
- 2. Software process vulnerabilities for an organization.
- 3. Monitor resources consumption in a software.
- 4. Interrelate security and software development process.

Detaile	d Contents:
Unit: 1	Secure Software Design Identify software vulnerabilities and perform software security analysis, Master security programming practices, Master fundamental software security design concepts, Perform security testing and quality assurance.
Unit: 2	Enterprise Application Development Describe the nature and scope of enterprise software applications, Design distributed N-tier software application, Research technologies available for the presentation, business and data tiers of an enterprise software application, Design and build a database using an enterprise database system, Develop components at the different tiers in an enterprise system, Design and develop a multi-tier solution to a problem using technologies used in enterprise system, Present software solution.
Unit: 3	Enterprise Systems Administration Design, implement and maintain a directory-based server infrastructure in a heterogeneous systems environment, Monitor server resource utilization for system reliability and availability, Install and administer network services(DNS/DHCP/Terminal Services/Clustering/Web/Email).
Unit: 4	Obtain the ability to manage and troubleshoot a network running multiple services, Understand the requirements of an enterprise network and how to goabout managing them.
Unit: 5	Handle insecure exceptions and command/SQL injection, Defend web and mobile applications against attackers, software containing minimum vulnerabilities and flaws. Case study of DNS server, DHCP configuration and SQL injection attack.

Examination and Evaluation Pattern: It include both internal evaluation (30 marks) comprising two class sessional exams/ assignments/ quiz/ seminar presentation etc. and external evaluation (70 marks) which is mainly end semester examination.

Text Books:

1 Theodor Richardson, Charles N Thies, Secure Software Design, Jones & Bartlett

Reference Books:

1 Kenneth R. van Wyk, Mark G. Graff, Dan S. Peters, Diana L. Burley, Enterprise Software

Course Code		Course Title			Lectur			
MTCS313PET		Wireless Access Technologies (Elective-5)		L	T	P		Semester: III
Version: Date of Approval:		Date of Approval:		4	0	0		
Scheme of Instruction					9	Scheme	of	Examination
No. of Periods	:	60 Hrs.		Ma	ximum	Score	:	100
Periods/ Week	:	4	Internal Evaluation : 30					30
Credits	:	4	End Semester : 70					70
Instruction Mode	:	Lecture	Exam Duration : 3 Hrs.					

- 1. Overview of wireless access technologies, Fixed wireless access networks. Terminal mobility issues regarding wireless access to Internet
- 2. Introduction to various Network topologies, hotspot networks, Communication links: point-to-point, point-to-multipoint, multipoint-to-multipoint.
- 3. To provide an overview of Standards for most frequently used wireless access networks: WPAN, UWB, WLAN, WMAN, WWAN. Network services. Wireless access networks planning, design and installation.
- 4. To get and insight of Wireless networking security issues, Wireless access network exploitation and management, software requirements, link quality control.

Course Outcomes:

- 1. interpret basic terms and characteristics of wireless access networks
- 2. compare various wireless access technologies
- 3. analyze measurements of wireless access network parameter
- 4. assess security issues in wireless networks
- 5. choose modulation technique for wireless transmission

Detailed Contents:

IInit. 1	disadvantages, Overview of wireless access technologies. Narrowband and broadband networks, fixed						
Unit: 1	and nomadic networks. Wireless local loop (WLL), Public Switched Telephone Network (PSTN)						
	interfaces.						
	Fixed wireless access (FWA) networks, frequency bands for different networks. Criterions for frequency						
Unit: 2	bands allocation, Network topologies, hotspot networks. Communication links: point-to-point (PTP),						
	point- to-multipoint (PMP), multipoint-to-multipoint (MTM).						
	Standards for most frequently used wireless access networks: WPAN (802.15, Bluetooth, DECT, IrDA),						
	UWB (Ultra-Wideband), WLAN (802.11, Wi-Fi, HIPERLAN, IrDA), WMAN (802.16, WiMAX,						
Unit: 3	HIPERMAN, HIPERACCESS), WWAN (802.20), Other technologies for broadband wireless access, Local						
	Multipoint Distribution Service (LMDS), Multichannel Multipoint Distribution Service (MMDS). Ad -Hoc						
	networks, Network services. Services types based on carrier frequency and bandwidth.						
	Wireless access networks planning, design and installation. Services provision, legislative and technical						
	aspects, Technical and economical factors for network planning: expenses, coverage, link capacity,						
Unit: 4	network complexity and carrier-to-interference ratio (C/I). Base station or access point allocation. Base						
	station and access point equipment. Terminal mobility issues regarding wireless access to Internet.						
	Wireless networking security issues.						
	Example of laptop or handheld PC wireless connection in real environment. PC wireless interface						
	equipment. Wireless access network exploitation and management, software requirements, link quality						
Unit: 5	control. Business model, wireless network services market, market research and marketing, service						
UIII. 3	providers, wireless data application service providers (WDASP) and their role on public						
	telecommunication services market, billing systems. Recent trends in wireless networking and various						
	access mechanism, new standards of wireless communication.						

Necessity for wireless terminals connectivity and networking. Wireless networking advantages and

Examination and Evaluation Pattern: It include both internal evaluation (30 marks) comprising two class sessional exams/ assignments/ quiz/ seminar presentation etc. and external evaluation (70 marks) which is mainly end semester examination.

Text Books:

- 1 M. P. Clark, Wireless Access Networks: Fixed Wireless Access and WLL networks -- Design and Operation, John Wiley & Sons, Chichester
- D. H. Morais, Fixed Broadband Wireless Communications: Principles and Practical Applications, Prentice Hall, Upper Saddle River

Reference Books:

R. Pandya, Introduction to WLLs: Application and Deployment for Fixed and Broadband Services, IEEE Press, Piscataway.

Course Code			Course Title				Lectur	re		
MTCS314PET			Data preparation and Analysis		l	L	T	P	6	
			(Elective-5)	•					Sen	nester III
Version:]	Date of Approval:		4	4	0	0		
Scheme of	Instruction	n							e of Exa	mination
No. of Perio		:	60 Hrs.				ıximum		: 10	
Periods/ W	eek	:	4		In		ıal Eval		: 30	
Credits		:	4					mester	: 70	
Instruction		:	Lecture			E	xam Du	ıration	: 3 I	Hrs.
Course Ob		_								
			ta for analysis							
			ul Data Visualizations							
			ter completion of course, stude	ents would b	e able					
			for performing the Analysis.							
Detailed	Contents	1								
11 1 4	Data G	atl	nering and Preparation: Da	ata formats	s, parsin	g a	nd tra	ansfor	rmatio	n,
Unit: 1	Scalabi	lit	y and real-time issues		•					
Unit: 2	Data C	le	aning: Consistency check	ing, Hetero	ogeneou	ıs a	and r	nissin	g dat	a, Data
UIIIL: Z	Transf	or	mation and Segmentation							
Unit: 3	Explor	ato	ory Analysis: Descriptive	and comp	oarative	st	atisti	cs, Cl	usteri	ng and
Ullit: 3	associa	ti	on, Hypothesis Generation	l						
Unit: 4	Visuali	za	tion: Designing visuali	zations, '	Time s	seri	ies,	Geolo	cated	data,
UIIIt. 4	Correlations and connections, Hierarchies and networks, interactivity									
Unit: 5	5 Visualizations using R									
Text Books:				-				•	•	
1 Making	sense of I)at	a : A practical Guide to Exploratory	Data Analysis	and Data	Mini	ing, by	Glenn		

Course Code		Course Title			Lectur				
MTCS315PET		Optimization Techniques (Elective-5)		L	Т	P		Semester: III	
Version: Date of Approval:			4	0	0				
Scheme of Instruction	Scheme of Instruction Scheme of					Examination			
No. of Periods	:	60 Hrs.	Maximum Score :				:	100	
Periods/ Week	:-	6	Internal Evaluation :					30	
Credits	••	4	End Semester :					70	
Instruction Mode	:	Lecture	•	H	Exam D	uration	:	3 Hrs.	

Prerequisite(s): It is expected that the students have done any programming language course

Course Objectives:

- 1. To provide insight to the mathematical formulation of real world problems.
- 2. To optimize these mathematical problems using nature based algorithms.
- 3. And the solution is useful especially for NP-Hard problems.

Course Outcomes: The Students will be able to:

- 1. Formulate and solve linear Programming Problems
- 2. Determine the optimum solution to constrained and unconstrained
- 3. Apply dynamic programming principle to Linear programming problems.
- 4. Determine the integer solutions to Linear Programming Problems

Detailed Contents:

Detailed Contents.	
Unit: 1	Introduction to Optimization: Engineering application of Optimization – Statement of an Optimization problem - Optimal Problem formulation - Classification of Optimization problem. Optimum design concepts: Definition of Global and Local optima – Optimality criteria - Review of basic calculus concepts – Global optimality
Unit: 2	Linear Programming: Introduction and formulation of models, Convexity, Simplex method, BigM method, Two-phase method, Degeneracy, non-existent and unbounded solutions, revised simplex method, duality in LPP, dual simplex method, sensitivity analysis, transportation and assignment problems, traveling salesman problem.
Unit: 3	Nonlinear Programming: Introduction and formulation of models, Classical optimization methods, equality and inequality constraints, Lagrange multipliers and Kuhn-Tucker conditions, quadratic forms, quadratic programming problem, Wolfe's method.
Unit: 4	Dynamic Programming: Principle of optimality, recursive relations, solution of LPP. Optimization algorithms for solving constrained optimization problems – direct methods – penalty function methods – steepest descent method - Engineering applications of constrained and unconstrained algorithms.
Unit: 5	Integer Linear Programming: Gomory's cutting plane method, Branch and bound algorithm, Knapsack problem, linear 0-1 problem. Modern methods of Optimization: Genetic Algorithms - Simulated Annealing - Ant colony optimization - Tabu search - Neural-Network based Optimization - Fuzzy optimization techniques - Applications. Use of Matlab to solve optimization problems. Software: Introduction to software for optimization techniques (TORA).

Examination and Evaluation Pattern: It include both internal evaluation (30 marks) comprising two class sessional exams/ assignments/ quiz/ seminar presentation etc. and external evaluation (70 marks) which is mainly end semester examination.

Text Books:

- 1 Kanti Swarup, Man Mohan and P.K.Gupta, Introduction to Operations Research, S.Chand & Co., 2006
- 2 J.C. Pant, Introduction to Operations Research, Jain Brothers, New Delhi, 2008

- 1 N.S.Kambo, Mathematical Programming Techniques, East-West Pub., Delhi, 1991.
- 2