CHEMISTRY (B.Sc) Life Sciences Effective from 2014 (Inorganic Chemistry-I)

Paper Code:	Semester Exam:	70 Marks
Instruction: 4 h / week	Duration:	3 hours
	Internal Assessmer	nt:30 Marks

UNIT-I Atomic Structure and Chemical Bonding:

Bohr's theory, its limitations and atomic spectrum of hydrogen atom. Wave mechanics: de Broglie equation, Heisenberg's Uncertainty Principle and its significance, Schrödinger's wave equation, significance of ψ and ψ , Quantum numbers and their significance. Normalized and orthogonal wave functions. Sign of wave functions. Radial and angular wave functions for hydrogen atom. Radial and angular distribution curves. Shapes of s, p, d and f orbitals. Contour boundary and probability diagrams. Pauli's Exclusion Principle, Hund's rule of maximum multiplicity, Aufbau's principle and its limitations, Variation of orbital energy with atomic number

Chemical bonding :

Valence bond theory, hybridization, VB theory as applied to ClF_3 , BrF_5 , $Ni(CO)_4$, XeF_2 . Dipole moment – orientation of dipoles in an electric field, dipole moment, induced dipole moment, dipole moment and structure of molecules. Molecular orbital theory – LCAO method, construction of M.O. diagrams for homo-nuclear and hetero-nuclear diatomic molecules (N₂, O₂, HCl, CO and NO). Comparison of VB and MO theories. Hydrogen bonding (theories of hydrogen bonding, valence bond treatment) Effects of chemical force, melting and boiling points, solubility energetic of dissolution process.

Unit - 2 Periodicity of Elements:

Modern Periodic Law and the long form of periodic table. Classification of elements on the basis of electronic configuration (s, p, d and f – block elements). Detailed discussion of the following properties of the elements with reference to s and p-block. i)Effective nuclear charge, shielding or screening effect, Slater rules, variation of effective nuclear charge in periodic table. ii) Atomic radii (van der Waals) iii) Ionic and crystal radii. iv) Covalent radii (octahedral and tetrahedral) v) Ionization enthalpy, Successive ionization enthalpies and factors affecting ionization energy. Applications of ionization enthalpy. vi) Electron gain enthalpy, trends of electron gain enthalpy. vii) Electronegativity, Pauling's/ Mulliken's/ Allred Rachow's/ and Mulliken-Jaffé's electronegativity scales. Variation of electronegativity with bond order, partial charge, hybridization, group electronegativity. Sanderson's electron density ratio. Diagonal, relationship between Li & Mg, Be & Al. and anamalous behavior of first member of each group.

Unit – 3 Chemistry of s and p Block Elements:

Inert pair effect, Relative stability of different oxidation states, diagonal relationship and anomalous behaviour of first member of each group. Allotropy and catenation. Complex formation tendency of s and p block elements. Hydrides and their classification ionic, covalent and interstitial. Basic beryllium acetate and nitrate. Study of the following compounds with emphasis on structure, bonding, preparation, properties and uses. Boric acid and borates, boron nitrides, borohydrides (diborane) carboranes and graphitic compounds, silanes, Oxides and oxoacids of nitrogen, Phosphorus and chlorine. Peroxo acids of sulphur, interhalogen compounds, polyhalide ions, pseudohalogens and basic properties of halogens. Occurrence and uses, rationalization of inertness of noble gases, Clathrates; preparation and properties of XeF2, XeF4 and XeF6; Nature of bonding in noble gas compounds (Valence bond treatment and MO treatment for XeF2). Molecular shapes of noble gas compounds (VSEPR theory).

<u>UNIT- -IV</u> Acids and Bases and Inorganic Polymers:

Brönsted-Lowry concept of acid-base reactions, solvated proton, relative strength of acids, types of acid-base reactions, levelling solvents, Lewis acid-base concept, Classification of Lewis acids, Hard and Soft Acids and Bases (HSAB) Application of HSAB principle.

Inorganic Polymers: Types of inorganic polymers, comparison with organic polymers, synthesis, structural aspects and applications of silicones and siloxanes. Borazines, silicates and phosphazenes, and polysulphates.

		A	
Paper Code:	OP 153(i)	Semester Exam:	35
		Marks	
Instruction:	3 h / week	Duration:	3 hours
		Internal Assessm	ent:15
		Marks	

CHEMISTRY LAB - 1

1. Analysis of one anions and one cation from a given of salt.

Cations : NH_{4^+} , Pb^{2_+} , Bi^{3_+} , Cu^{2_+} , Cd^{2_+} , Fe^{3_+} , $Al3_+$, Co^{3_+} , Ni^{2_+} , Mn^{2_+} , Zn^{2_+} , Ba^{2_+} , Sr^{2_+} , Ca^{2_+} , Mg^{2_+} **Anions :** $CO_3^{2_-}$, S^{2_-} , $SO_3^{2_-}$, NO_3^- , CH_3COO^- , Cl^- , Br^- , I^- , $SO_4^{2_-}$, $PO_4^{3_-}$, $BO_3^{3_-}$ 2. Determination of carbonate and bicarbonate in a mixture

3. Determination of Fe(II) using K₂Cr₂O₇

- 4. Determination of Fe(II) using KMnO₄ with oxalic acid as primary standard.
- 5. Determination of Cu(II) using $Na_2S_2O_3$ with $K_2Cr_2O_7$ as primary standard
- 6. Determination of Zinc using EDTA

7. Determination of hardness of water

8. Determination of Zinc by Ferro cyanide

CHEMISTRY -2

(0)rganic (Chemistry-I)	

Paper Code:	Semester Exam: 70 Marks
Instruction: 4 h / week	Duration:3 hoursInternal Assessment:30Marks

Unit - 1 Structural theory in Organic Chemistry:

Types of bond fission and organic reagents (Electrophilic, Nucleophilic, and free radical reagents including neutral molecules like H₂O, NH₃ & AlCl₃).

Bond polarization : Factors influencing the polarization of covalent bonds, electro negativity. Inductive effect - Application of inductive effect on basicity of amines, acidity of carboxylic acides, stability of carbonium ions, carbanions. free radicals, carbenes. Resonance or Mesomeric effect - Application to acidity of phenol and carboxylic acids. Hyper conjugation - Stability of carbonium ions, Free radicals, carbanions, carbenes and nitrenes.

Types of Organic reactions: Addition-electrophilic, nucleophilic and free radical. Substitution-electrophilic, nucleophilic and free radical. Elimination- Examples (mechanism not required).

Unit - 2 Stereochemistry of carbon compounds:

Three dimensional structures of organic molecules and Molecular representations- Wedge, Fischer, Newman and Saw-horse formulae.Homomers, Isomers, Constitutional isomers (chain, positional, functional), Stereoisomers,

Enantiomers and Diastereomers, Configurational and Conformational stereoisomers – definitions and examples.

Optical Isomerism, optical rotation and specific rotation. Enantiomers, Racemic mixture- racemisation and resolution techniques. Chiral center, Chiral molecules-, Molecules with similar and dissimilar chiral carbons – examples - tartaric acid and 2,3-dibromopentane - definition of mesomers - formulae for calculating the number of stereoisomers. D and L configuration, R &S configuration in molecules with chiral centres – CIP rules. Geometrical isomerism in alkenes- Cis & Trans, E & Z- configuration

Unit-3 Aromatic and Acyclic Hydrocarbons

Aromatic hydrocarbons Preparation (Case benzene): from phenol, bydecarboxylation, from acetylene, from benzene sulphonic acid. Reactions:(Case benzene): Electrophilic substitution: nitration, halogenation and sulphonation. Friedel-Craft's reaction (alkylation and acylation) (upto 4 carbons on benzene). Side chain oxidation of alkyl benzenes (upto 4 carbons on benzene)

Alkanes- IUPAC Nomenclature of Hydrocarbons. Methods of preparation: Hydrogenation of alkynes and alkenes, Wurtz reaction, Kolbe's electrolysis, Free radical substitution mechanism. Halogenation. Alkenes – Preparation of alkenes dehydration of alcohols (b) dehydrohalogenation of alkyl halides, by (a) Saytzev's rule. trans alkenes (Birch reduction) Reactions :Addition of halogen and its mechanism. Addition of HX, Markonikov's rule, addition of H2O, HOX, H2SO4 and addition of HBr in the presence of peroxide (anti – Markonikov's addition). Ozonolysis, Oxidation – hydroxylation by KMnO4, OsO4, peracids (via epoxidation) hydroboration oxidation, Oxymercuration and demercuration, Dienes – Types of dienes, reactions of conjugated dines – 1,2 and 1,4 addition of HBr to 1,3 - butadiene and Diel's - Alder reaction. Alkynes - Preparation : Acetylene from CaC2 and conversion into higher alkynes; by dehydrohalogenation of dihalides, dehalogenation of tetrahalides, Reactions; formation of metal acetylides, addition of bromine and alkaline KMnO4, ozonolysis and oxidation with hot alkaline KMnO4.

Unit – 4 Functional group – I

Alkyl and Aryl Halides

Nomenclature and classification of alkyl (into primary, secondary, tertiary), aryl, aralkyl, allyl, vinyl, benzyl halides. Preparation: from alkenes and alcohols. Reactions: hydrolysis, nitrite & nitro formation, nitrile & isonitrile formation. Williamson's ether synthesis: Elimination vs substitution Nucleophilic aliphatic substitution reaction- Classification into SN1 and SN2. Energy profile diagram of SN1 and SN2 reactions. Stereochemistry of SN2 (Walden Inversion) SN1 (Racemisation). Explanation of both by taking the example of optically active alkyl halide – 2bromobutane. Ease of hydrolysis – comparision of alkyl, benzyl, alkyl, vinyl and aryl halides Aryl Halides Preparation: (Chloro, bromo and iodo-benzene from phenol, Sandmeyer Gattermann case): & reactions. Reactions (Chlorobenzene): Aromatic nucleophilic substitution (replacement by –OH group) and effect of nitro substituent. Benzyne Mechanism: KNH2/NH3 (or NaNH2/NH3). Reactivity and Relative strength of C-Halogen bond in alkyl, allyl, benzyl, vinyl and aryl halides.

Alcohols, Phelos and ether.

Preparation of alcohols from alkene by hydroboration oxidation reaction, Grignard synthesis of alcohols. Preparation of phenols from diazonium salt, aryl sulphonates, from cumene.

Reactions : acidic nature of phenols.formation of alkoxides/phenoxides and their reaction with RX. replacement of OH by X using PCI5, PCI3, PBr3,SOCI2 and with HX/ZnCl2. esterification by acids (mechanism).dehydration of alcohols.oxidation of alcohols by CrO3, KMnO4.

Reaction of phenols: Bromination, Kolb-Schmidt reaction, Riemer-Tiemann reaction, , Gattermann-Koch Reaction, Houben–Hoesch Condensation, Schotten – Baumann Reaction, azocoupling.

Identification of alcohols by oxidation with KMnO4, ceric ammonium nitrate, lucas reagent and phenols by reaction with FeCl3. Polyhydroxy compounds: Pinacol-Pinacolone rearrangement.Ethers (aliphatic and aromatic): Cleavage of ethers with HI.Aldehydes and ketones (aliphatic and aromatic): (Formaldehye, acetaldehyde, acetoneand benzaldehyde) Preparation: from acid chlorides and from nitriles. Reactions – Reaction with HCN, ROH, NaHSO3, NH2-G derivatives. Iodoform test. Aldol Condensation, Cannizzaro's reaction, Wittig reaction, Benzoin condensation. Clemensen reduction and Wolff Kishner reduction. Meerwein-Pondorff Verley reduction.

Paper C	ode:	Semester Exam:	35
		Marks	
Instruction:	3 h / week	Duration:	3
		hours	
		Internal Assessme	nt:15
		Marks	

CHEMISTRY LAB – 2

- 1. Identification of elements (N, S, X = Cl, Br and I, and both n & S present together) in an organic compound.
- 2. Identification of unknown organic compounds containing monofunctional groups (carbohydrates, aryl halides, aromatic hydrocarbons, nitro compounds, amines and amides) and simple bi-functional groups, e.g. salicylic acid, cinnamic acid, nitrophenols, etc
- 3. Preparation of methyl orange and aspirin.
- 4. Separation of a mixture of amino acids by paper chromatography.
- 5. Separation of a mixture of o- and p- nitrophenol by thin layer chromatography(TLC)
- **6.** Determination of optical activity by using polarimeter.

CHEMISTRY -3 (Physical Chemistry-I)

Paper Code:	Semester Exam:	35 Marks
Instruction: 4 h / week	Duration:	3 hours
	Internal Assessme	nt:15 Marks

Unit - 1 States of Matter

Postulates of Kinetic Theory of Gases and derivation of the kinetic gas equation. Deviation of real gases from ideal behaviour, compressibility factor, causes of deviation. van der Waals equation of state for real gases. Boyle temperature (derivation not required). Critical phenomena, critical constants and their calculation from van der Waals equation. Andrews isotherms of CO2. Maxwell Boltzmann distribution laws of molecular velocities and molecular energies (graphic representation – derivation not required) and their importance. Temperature dependence of these distributions. Most probable, average and root mean square

velocities (no derivation). Collision cross section, collision number, collision frequency, collision diameter and mean free path of molecules. Viscosity of gases and effect of temperature and pressure on coefficient of viscosity (qualitative treatment only).

Liquids

Surface tension and its determination using stalagmometer. Viscosity of a liquid and determination of coefficient of viscosity using Ostwald viscometer. Effect of temperature on

surface tension and coefficient of viscosity of a liquid (qualitative treatment only).

Solids

Forms of solids. Symmetry elements, unit cells, crystal systems, Bravais lattice types and identification of lattice planes. Laws of Crystallography - Law of constancy of interfacial angles, Law of rational indices. Miller indices. X–Ray diffraction by crystals, Bragg's law. Structures of NaCl, KCl and CsCl (qualitative treatment only). Defects in crystals. Glasses and liquid crystals.

Unit - 2. Thermo chemistry:

Important Principles and definition of thermo chemistry, Heats of reactions: standard states; enthalpy of formation of molecules and ions and enthalpy of combustion and its applications; calculation of bond energy, bond dissociation energy and resonance energy

from thermo chemical data, effect of temperature (Kirchhoff's equations) and pressure on enthalpy of reactions.Intensive and extensive variables; state and path functions; isolated, closed and open systems; zeroth law of thermodynamics.

First law: Concept of heat, q, work, w, internal energy, U, and statement of first law; enthalpy, H, relation between heat capacities, calculations of q, w, U and H for reversible, irreversible and free expansion of gases (ideal and van der Waals) under isothermal and adiabatic conditions. Statement of second and third law of thermodynamics.

Unit - 3 Chemical Equilibrium and Ionic Equilibrium:

Free energy change in a chemical reaction. Thermodynamic derivation of the law of chemical equilibrium. Distinction between ΔG and ΔGo ,LeChatelier'sprinciple. Relationships between Kp, Kc and Kx for reactions involving ideal gases. Strong, moderate and weak electrolytes, degree of ionization, factors ffecting degree of ionization, ionization constant and ionic product of water. Ionization of weak acids and bases, pH scale, common ion effect. Salt hydrolysis-calculation of hydrolysis constant, degree of hydrolysis and pH for different salts. Buffer solutions. Solubility and solubility product of sparingly soluble salts – applications of solubility product principle.

Unit - 4. Chemical Kinetics

Rate of reaction, factors influencing the rate of a reaction-concentration, temperature, pressure, solvent, light, catalyst. Experimental methods to determine the rate of reaction. Definition of order and molecularity. Derivation of Integrated rate equations for zero, first and second order reactions (both for equal and unequal concentration of reactants). Derivation for time half change. Methods to determine the order of reactions. Effect of temperature on rate of reaction, Arrhenius equation, concept of activation energy and its calculation from Arrhenius equation. Theories of reaction rates- collision theory and activated complex theory of bimolecular reaction.

	CHEMISTRY-III (Physical Chemistry-I)		
Paper Code: OP)		Semester Exam: Marks	35
Instruction: 3 h / Duration: 3 hou week		3 hours	
		Internal Assessm 15 Marks	nent:

- 1. Determination of the surface tension of a liquid or a dilute solution using a stalagmometer.
- 2. Determination of the relative and absolute viscosity of a liquid or dilute solution using an Oswald's viscometer.
- **3.** Determination of heat capacity of calorimeter for different volumes.
- **4.** Determination of enthalpy of neutralization of hydrochloric acid with sodium hydroxide.
- **5.** Determination of enthalpy of hydration of copper sulphate.
- Prereparation of sodium acetate acetic acid buffer solutions and measurement of their pH.
- 7. Potentiometric titrations of (i) strong acid vs strong base (ii) weak acid vs strong base (iii) strong acid vs weak base .
- 8. Determination of dissociation constant of weak acids.
- 9. Study the kinetics of the Iodide-persulphate reaction by Initial rate method
- Study the kinetics of the i) acid hydrolysis of methyl acetate with hydrochloric acid ii) Saponification of ethyl acetate by Integrated rate method.

Chemistry -4 (Physical Chemistry-II & Inorganic Chemistry-II)

Paper Code:	Semester Exam:	70 Marks
Instruction: 4 h / week	Duration:	3 hours
	Internal Assessme	nt:30 Marks

Unit - 1. Conductance and Electrochemistry:

Specific conductance, equivalent conductance, measurement of equivalent conductance. Variation of equivalent conductance with dilution. Migration of ions, Kohlrausch's law. Arrhenius theory of electrolyte dissociation and its limitations. Ostwald's dilution law. Debye-Huckel-Onsagar's equation for strong electrolytes (elementary treatment only). Definition of transport number, determination by Hittorf's method. Application of conductivity measurements-determination of dissociation constant (K_a) of an acid, determination of solubility product of sparingly soluble salt, conduct metric titrations (only acid – base).

Types of reversible electrodes- the gas electrode, metal-metal ion, metal-insoluble salt and redox electrodes. Electrode reactions, Nernst equation, single electrode potential, standard Hydrogen electrode, reference electrodes, standard electrode potential, sign convention, electrochemical series and its significance. Reversible and irreversible cells, conventional representation of electrochemical cells. EMF of a cell and its measurements. Computation of cell EMF. Applications of EMF measurements, Calculation of thermodynamic quantities of cell reactions (Δ G, Δ H and K). Determination of pH using quinhydrone electrode, Solubility product of AgCl. Potentiometric titrations – qualitative treatment (acid – base and oxidation – reduction only).

Unit – 2. Phase Equilibrium:

Phases, components and degrees of freedom of a system, criteria of phase equilibrium. Gibbs Phase Rule and its thermodynamic derivation. Derivation of Clausius – Clapeyron equation and its importance in phase equilibria. Phase diagrams of one-component systems (water and sulphur) and two component systems involving eutectics, congruent and incongruent melting points (lead-silver, FeCl3-H2O and Na-K only).

Unit - 3. Transition elements :

General group trends with special reference to electronic configuration, variable valency, colour, magnetic and catalytic properties, ability to form complexes and stability of various oxidation states (Latimer diagrams) for Mn, Fe and Cu Lanthanoids and Actinoids: Electronic configuration, oxidation states, colour, spectral and magnetic properties, lanthanide contraction, separation of lanthanides (ion-exchange method only).

Unit -4 Coordination Chemistry :

Werner's theory, IUPAC nomenclature of coordination compounds, isomerism in coordination compounds. Stereochemistry of complexes with 4 and 6 coordination numbers. Chelate effect, polynuclear complexes, Labile and inert complexes. valence bond theory (inner and outer orbital complexes), Drawbacks of VBT. Crystal Field Theory, Crystal field effect, octahedral symmetry. Crystal field stabilization energy (CFSE), Crystal field effects for weak and strong fields. Spectrochemical series.

CHEMISTRY-IV

(Physical Chemistry-II and Inorganic Chemistry II)

Paper Code: OP)	Semester Exam: 35 Mar	rks
Instruction: 3 h / week	Duration: 3 hour	S
	Internal Assessment:	
	15 Marks	

- **1.** Determination of cell constant
- 2. Perform the following conductometric titrations: (i) Strong acid vs. strong base(ii) Weak acid vs. Strong base
 - i) Perform the following potentiometric titrations: (i) Strong acid vs. strong
- 3. base (ii) Weak acid vs. strong base (iii) Potassium dichromate vs. Mohr's salt

- 4. Construction of the phase diagram of a binary system (simple eutectic) using cooling curves.
- 5. Determination of the critical solution temperature and composition of the phenol water system and study of the effect of impurities on it.
- 6. Analysis of two anions and two cations from a mixture of salt.
- 7. Cations: NH₄⁺, Pb²⁺, Bi³⁺, Cu²⁺, Cd²⁺, Fe³⁺, Al3+, Co³⁺, Ni²⁺, Mn²⁺, Zn²⁺, Ba²⁺, Sr²⁺, Ca²⁺, Mg²⁺
 Anions: CO₃²⁻, S²⁻, SO₃²⁻, NO₃⁻, CH₃COO⁻, Cl⁻, Br⁻, l⁻, SO₄²⁻, PO₄³⁻, BO₃³⁻
- 8. Draw calibration curve (absorbance at λ max vs. concentration) for various concentrations of a given coloured compound (KMnO4/CuSO4) and estimate the concentration of the same in a given solution.
- 9. Preparation of the following complexes.
 - i) Tetraamminecopper (II) sulphate, [Cu(NH3)4]SO4.H2O
 - ii) Potassium tris(oxalate)ferrate(III)
- 10. Estimation of nickel (II) using Dimethylglyoxime (DMG)

Recommended Text and Reference Books:

- 1. Text book of Physical Chemistry by P.L.Soni, O.P.Dharmarha and Q.N.Dash
- 2. Physical chemistry through problems By S K Dogra
- 3. Advanced Physical Chemistry by Puri & Sharma.
- 4. Basic Concept of Physical Chemistry by P. L. Soni.
- 5. Senior's practical physical chemistry by Khosla
- 1. Concise Inorganic Chemistry by J.D.Lee
- 2. Advanced Inorganic chemistry by Puri & Sharma.
- 3. Advanced Inorganic Chemistry by P. L. Soni.
- 4. A textbook of qualitative inorganic analysis by A.I. Vogel

Syllabus based on CBCS effective from 2016-

Course Code	BCH201CCT		Semester
Course title	Conceptual Organic Chemistry		1
Scheme of Inst	truction	Scheme of Examination	
Total Duration	: 60 Hrs	Maximum Score	: 70
Periods / Week	: 4	Internal Evaluation	: 30
Credits	: 4	End Semester	: 70
Instruction	: Lecture	Examination hours	: 3 Hrs
Mode			

Course Objectives: Stereochemistry of organic compounds and knowledge of different types of reactions in organic compounds with their mechanism.

Course Outcomes: Acquaintance with differentiation among addition, substitution and elimination organic reactions. Concepts of organic oxidation and reduction reactions and stereochemistry.

Unit	Course Content	Instruction Hours
1	Stereochemistry	
	Isomerism, Classification of isomerism, Structural and stereo	
	isomerism, Geometrical and optical isomerism, requirements for	
	a molecule to show geometrical isomerism, Cis- trans isomerism,	
	Eand Z notation along with CIP rules for geometrical isomers.	15
	Optical activity, specific and molar rotation, chirality,	
	enantiomerism, diastereoisomerism, racemic mixtures and their	
	resolution by salt formation method. Relative and absolute	

Addition reactions in alkenes and alkynes, hydrogenation, addition of halogen Hydrohalogenation (Markovnikov,s and anti- Markovnikov,s addition) hydration, , Hydroboration-oxidation and Oxymercuration- demercuration.Ozonolysis, Reactivity of alkenes vs alkynes. 15 Addition reactions in aldehydes and ketones (formaldehyde, acetaldehyde, benzaldehyde, acetone). Name reactions; aldol, cross aldol, Claisen, Knovengel, Cannizzaro, cross Cannizzaro. Reaction. 15 3 Substitution Reactions 15 3 Substitution reactions, Electrophilic substitution reactions, General mechanism of electrophilic substitution reactions (nitration, halogentaion, sulphonation, Friedal Crafts alkylation and acylation), directive influence of substituent's. Nucleophilic substitution reactions, alkyl, allyl and benzyl halides, substitution of halogen by some common nucleophiles. Mechanism of SN ¹ and SN ² reactions, free radical substitution reactions, halogenations of alkanes, allylic compounds and alkyl benzenes. 15			
2 Addition Reactions Addition reactions in alkenes and alkynes, hydrogenation, addition of halogen Hydrohalogenation (Markovnikov,s and anti- Markovnikov,s addition) hydration, , Hydroboration-oxidation and Oxymercuration- demercuration.Ozonolysis, Reactivity of alkenes vs alkynes. 15 Addition reactions in aldehydes and ketones (formaldehyde, acetaldehyde, benzaldehyde, acetone). Name reactions; aldol, cross aldol, Claisen, Knovengel, Cannizzaro, cross Cannizzaro. Reaction. 15 3 Substitution Reactions 15 7 Types of substitution reactions, Electrophilic substitution reactions (nitration, halogentaion, sulphonation, Friedal Crafts alkylation and acylation), directive influence of substituent's. Nucleophilic substitution reactions, free radical substitution reactions, halogenations of alkanes, allyli and benzyl halides, substitution of halogen by some common nucleophiles. Mechanism of SN ⁴ and SN ² reactions, free radical substitution reactions, halogenation, alcohols (Dehydration), Mechanism of El and E2 reactions (nature of substrate and base). Oxidation of alcohols with potassium permanganate, potassium dichromate, catalytic dehydrogenation and Oppenauer oxidation of 1,2- diols with periodic acid and lead tetra acetate. Oxidation of ladehydes and ketones with potassium permanganate, sodium hypoiodite (iodoform reaction) and 15		configuration, D & L nomenclature system for configuration of	
Addition reactions in alkenes and alkynes, hydrogenation, addition of halogen Hydrohalogenation (Markovnikov,s and anti- Markovnikov,s addition) hydration, , Hydroboration-oxidation and Oxymercuration- demercuration.Ozonolysis, Reactivity of alkenes vs alkynes. 15 Addition reactions in aldehydes and ketones (formaldehyde, acetaldehyde, benzaldehyde, acetone). Name reactions; aldol, cross aldol, Claisen, Knovengel, Cannizzaro, cross Cannizzaro. Reaction. 15 3 Substitution Reactions Types of substitution reactions, Electrophilic substitution reactions (nitration, halogentaion, sulphonation, Friedal Crafts alkylation and acylation), directive influence of substituent's. Nucleophilic substitution reactions, alkyl, allyl and benzyl halides, substitution of halogen by some common nucleophiles. Mechanism of SN ¹ and SN ² reactions, free radical substitution reactions, halogenation, alcohols (Dehydration), Mechanism of El and E2 reactions (nature of substrate and base). Oxidation of alcohols with potassium permanganate, potasium permanganate, sodium hypoiodite (iodoform reaction) and 15		carbohydrates, R and S configuration (upto two chiral centres).	
addition of halogen Hydrohalogenation (Markovnikov,s and anti- Markovnikov,s addition) hydration, , Hydroboration-oxidation and Oxymercuration- demercuration.Ozonolysis, Reactivity of alkenes vs alkynes. 15 Addition reactions in aldehydes and ketones (formaldehyde, acetaldehyde, benzaldehyde, acetone). Name reactions; aldol, cross aldol, Claisen, Knovengel, Cannizzaro, cross Cannizzaro. Reaction. 15 3 Substitution Reactions 15 Types of substitution reactions, Electrophilic substitution reactions (nitration, halogentaion, sulphonation, Friedal Crafts alkylation and acylation), directive influence of substituent's. Nucleophilic substitution reactions, alkyl, allyl and benzyl halides, substitution of halogen by some common nucleophiles. Mechanism of SN ¹ and SN ² reactions, free radical substitution reactions, halogenations of alkanes, allylic compounds and alkyl benzenes. 15 4 Elimination, Oxidation and Reduction Reactions Alkyl halides (dehydrogenation, Saytzeff,s rule), vicinal dihalides (dehalogenation), alcohols (Dehydration), Mechanism of E1 and E2 reactions (nature of substrate and base). Oxidation of alcohols with potassium permanganate, potassium dichromate, catalytic dehydrogenation and Opppenauer oxidation and oxidation of 1,2- diols with periodic acid and lead tetra acetate. Oxidation of aldehydes and ketones with potassium permanganate, potassium permanganate, sodium hypoiodite (iodoform reaction) and 15	2	Addition Reactions	
15 anti- Markovnikov,s addition) hydration, , Hydroboration- oxidation and Oxymercuration- demercuration.Ozonolysis, Reactivity of alkenes vs alkynes. Addition reactions in aldebydes and ketones (formaldebyde, acetaldehyde, benzaldehyde, acetone). Name reactions; aldol, cross aldol, Claisen, Knovengel, Cannizzaro, cross Cannizzaro. Reaction. 3 Substitution Reactions Types of substitution reactions, Electrophilic substitution reactions, General mechanism of electrophilic substitution ractions (nitration, halogentaion, sulphonation, Friedal Crafts alkylation and acylation), directive influence of substituent's. Nucleophilic substitution reactions, alkyl, allyl and benzyl halides, substitution of halogen by some common nucleophiles. Mechanism of SN ¹ and SN ² reactions, free radical substitution reactions, halogenations of alkanes, allylic compounds and alkyl benzenes. 4 Elimination, Oxidation and Reduction Reactions Alkyl halides (dehydrogenation, Saytzeff, s rule), vicinal dihalides (dehalogenation), alcohols (Dehydration), Mechanism of El and E2 reactions (nature of substrate and base). Oxidation of alcohols with potassium permanganate, potassium dichromate, catalytic dehydrogenation and Opppenauer oxidation and oxidation of 1,2- diols with periodic acid and lead tetra acetate. Oxidation of aldehydes and ketones with potassium permanganate, sodium hypoiodite (iodoform reaction) and 15		Addition reactions in alkenes and alkynes, hydrogenation,	
anti- Markovnikov,s addition) hydration, , Hydroboration- oxidation and Oxymercuration- demercuration.Ozonolysis, Reactivity of alkenes vs alkynes. Addition reactions in aldehydes and ketones (formaldehyde, acetaldehyde, benzaldehyde, acetone). Name reactions; aldol, cross aldol, Claisen, Knovengel, Cannizzaro, cross Cannizzaro. Reaction. 3 Substitution Reactions Types of substitution reactions, Electrophilic substitution reactions, General mechanism of electrophilic substitution ractions (nitration, halogentaion, sulphonation, Friedal Crafts alkylation and acylation), directive influence of substituent's. Nucleophilic substitution reactions, alkyl, allyl and benzyl halides, substitution of halogen by some common nucleophiles. Mechanism of SN ¹ and SN ² reactions, free radical substitution reactions, halogenation, of alkanes, allylic compounds and alkyl benzenes. 15 4 Elimination, Oxidation and Reduction Reactions Alkyl halides (dehydrogenation, Saytzeff, s rule), vicinal dihalides (dehalogenation), alcohols (Dehydration), Mechanism of E1 and E2 reactions (nature of substrate and base). Oxidation of alcohols with potassium permanganate, potassium dichromate, catalytic dehydrogenation and Opppenauer oxidation and oxidation of 1,2- diols with periodic acid and lead tetra acetate. Oxidation of aldehydes and ketones with potassium permanganate, sodium hypoiodite (iodoform reaction) and 15		addition of halogen Hydrohalogenation (Markovnikov,s and	15
Reactivity of alkenes vs alkynes. Addition reactions in aldehydes and ketones (formaldehyde, acetaldehyde, benzaldehyde, acetone). Name reactions; aldol, cross aldol, Claisen, Knovengel, Cannizzaro, cross Cannizzaro. Reaction. 3 Substitution Reactions Types of substitution reactions, Electrophilic substitution reactions, General mechanism of electrophilic substitution ractions (nitration, halogentaion, sulphonation, Friedal Crafts alkylation and acylation), directive influence of substituent's. 15 Nucleophilic substitution reactions, alkyl, allyl and benzyl halides, substitution of halogen by some common nucleophiles. Mechanism of SN ¹ and SN ² reactions, free radical substitution reactions, halogenations of alkanes, allylic compounds and alkyl benzenes. 15 4 Elimination, Oxidation and Reduction Reactions Alkyl halides (dehydrogenation, Saytzeff,s rule), vicinal dihalides (dehalogenation), alcohols (Dehydration), Mechanism of E1 and E2 reactions (nature of substrate and base). Oxidation of alcohols with potassium permanganate, potassium dichromate, catalytic dehydrogenation and Opppenauer oxidation and oxidation of 1,2- diols with periodic acid and lead tetra acetate. Oxidation of aldehydes and ketones with potassium permanganate, sodium hypoiodite (iodoform reaction) and 15		anti- Markovnikov,s addition) hydration, , Hydroboration-	13
Addition reactions in aldehydes and ketones (formaldehyde, acetaldehyde, benzaldehyde, acetone). Name reactions; aldol, cross aldol, Claisen, Knovengel, Cannizzaro, cross Cannizzaro. Reaction. 3 Substitution Reactions Types of substitution reactions, Electrophilic substitution reactions, General mechanism of electrophilic substitution ractions (nitration, halogentaion, sulphonation, Friedal Crafts alkylation and acylation), directive influence of substituent's. 15 Nucleophilic substitution reactions, alkyl, allyl and benzyl halides, substitution of halogen by some common nucleophiles. Mechanism of SN ¹ and SN ² reactions, free radical substitution reactions, halogenations of alkanes, allylic compounds and alkyl benzenes. 14 Elimination, Oxidation and Reduction Reactions Alkyl halides (dehydrogenation, Saytzeff,s rule), vicinal dihalides (dehalogenation), alcohols (Dehydration), Mechanism of El and E2 reactions (nature of substrate and base). Oxidation of alcohols with potassium permanganate, potassium dichromate, catalytic dehydrogenation and Opppenauer oxidation and oxidation of 1,2- diols with periodic acid and lead tetra acetate. Oxidation of aldehydes and ketones with potassium permanganate, sodium hypoiodite (iodoform reaction) and 15		oxidation and Oxymercuration- demercuration.Ozonolysis,	
acetaldehyde, benzaldehyde, acetone). Name reactions; aldol, cross aldol, Claisen, Knovengel, Cannizzaro, cross Cannizzaro. Reaction. 3 Substitution Reactions Types of substitution reactions, Electrophilic substitution reaction. 3 Substitution Reactions Types of substitution reactions, Electrophilic substitution reactions, General mechanism of electrophilic substitution ractions (nitration, halogentaion, sulphonation, Friedal Crafts alkylation and acylation), directive influence of substituent's. Nucleophilic substitution reactions, alkyl, allyl and benzyl halides, substitution of halogen by some common nucleophiles. Mechanism of SN ¹ and SN ² reactions, free radical substitution reactions, halogenations of alkanes, allylic compounds and alkyl benzenes. 4 Elimination, Oxidation and Reduction Reactions Alkyl halides (dehydrogenation, Saytzeff,s rule), vicinal dihalides (dehalogenation), alcohols (Dehydration), Mechanism of El and E2 reactions (nature of substrate and base). Oxidation of alcohols with potassium permanganate, potassium dichromate, catalytic dehydrogenation and Oppenauer oxidation and oxidation of 1,2- diols with periodic acid and lead <t< td=""><th></th><td>Reactivity of alkenes vs alkynes.</td><td></td></t<>		Reactivity of alkenes vs alkynes.	
cross aldol, Claisen, Knovengel, Cannizzaro, cross Cannizzaro. Reaction. 3 Substitution Reactions Types of substitution reactions, Electrophilic substitution reactions, General mechanism of electrophilic substitution reactions (nitration, halogentaion, sulphonation, Friedal Crafts alkylation and acylation), directive influence of substituent's. Nucleophilic substitution reactions, alkyl, allyl and benzyl halides, substitution of halogen by some common nucleophiles. Mechanism of SN ¹ and SN ² reactions, free radical substitution reactions, halogenations of alkanes, allylic compounds and alkyl benzenes. 4 Elimination, Oxidation and Reduction Reactions Alkyl halides (dehydrogenation, Saytzeff,s rule), vicinal dihalides (dehalogenation), alcohols (Dehydration), Mechanism of El and E2 reactions (nature of substrate and base). Oxidation of alcohols with potassium permanganate, potassium dichromate, catalytic dehydrogenation and Opppenauer oxidation and oxidation of 1,2- diols with periodic acid and lead tetra acetate. Oxidation of aldehydes and ketones with potassium permanganate, sodium hypoiodite (iodoform reaction) and		Addition reactions in aldehydes and ketones (formaldehyde,	
Reaction. 3 Substitution Reactions Types of substitution reactions, Electrophilic substitution reactions, General mechanism of electrophilic substitution reactions (nitration, halogentaion, sulphonation, Friedal Crafts alkylation and acylation), directive influence of substituent's. 15 Nucleophilic substitution reactions, alkyl, allyl and benzyl halides, substitution of halogen by some common nucleophiles. Mechanism of SN ¹ and SN ² reactions, free radical substitution reactions, halogenations of alkanes, allylic compounds and alkyl benzenes. 15 4 Elimination, Oxidation and Reduction Reactions Alkyl halides (dehydrogenation, Saytzeff,s rule), vicinal dihalides (dehalogenation), alcohols (Dehydration), Mechanism of E1 and E2 reactions (nature of substrate and base). Oxidation of alcohols with potassium permanganate, potassium dichromate, catalytic dehydrogenation and Opppenauer oxidation and oxidation of 1,2- diols with periodic acid and lead tetra acetate. Oxidation of aldehydes and ketones with potassium permanganate, sodium hypoiodite (iodoform reaction) and 15		acetaldehyde, benzaldehyde, acetone). Name reactions; aldol,	
3 Substitution Reactions 3 Substitution Reactions Types of substitution reactions, Electrophilic substitution reactions, General mechanism of electrophilic substitution ractions (nitration, halogentaion, sulphonation, Friedal Crafts alkylation and acylation), directive influence of substituent's. 15 Nucleophilic substitution reactions, alkyl, allyl and benzyl halides, substitution of halogen by some common nucleophiles. 15 Mechanism of SN ¹ and SN ² reactions, free radical substitution reactions, halogenations of alkanes, allylic compounds and alkyl benzenes. 4 4 Elimination, Oxidation and Reduction Reactions 10 Alkyl halides (dehydrogenation, Saytzeff,s rule), vicinal dihalides (dehalogenation), alcohols (Dehydration), Mechanism of E1 and E2 reactions (nature of substrate and base). Oxidation of alcohols with potassium permanganate, potassium dichromate, catalytic dehydrogenation and Opppenauer oxidation and oxidation of 1,2- diols with periodic acid and lead tetra acetate. Oxidation of aldehydes and ketones with potassium permanganate, sodium hypoiodite (iodoform reaction) and 15		cross aldol, Claisen, Knovengel, Cannizzaro, cross Cannizzaro.	
Types of substitution reactions, Electrophilic substitution reactions, General mechanism of electrophilic substitution reactions, General mechanism of electrophilic substitution ractions (nitration, halogentaion, sulphonation, Friedal Crafts alkylation and acylation), directive influence of substituent's. 15 Nucleophilic substitution reactions, alkyl, allyl and benzyl 15 halides, substitution of halogen by some common nucleophiles. 16 Mechanism of SN ¹ and SN ² reactions, free radical substitution reactions, halogenations of alkanes, allylic compounds and alkyl benzenes. 4 Elimination, Oxidation and Reduction Reactions Alkyl halides (dehydrogenation, Saytzeff,s rule), vicinal dihalides (dehalogenation), alcohols (Dehydration), Mechanism of E1 and E2 reactions (nature of substrate and base). Oxidation of alcohols with potassium permanganate, potassium dichromate, catalytic dehydrogenation and Opppenauer 15 oxidation and oxidation of 1,2- diols with periodic acid and lead 15		Reaction.	
 reactions, General mechanism of electrophilic substitution ractions (nitration, halogentaion, sulphonation, Friedal Crafts alkylation and acylation), directive influence of substituent's. Nucleophilic substitution reactions, alkyl, allyl and benzyl halides, substitution of halogen by some common nucleophiles. Mechanism of SN¹ and SN² reactions, free radical substitution reactions, halogenations of alkanes, allylic compounds and alkyl benzenes. Elimination, Oxidation and Reduction Reactions Alkyl halides (dehydrogenation, Saytzeff,s rule), vicinal dihalides (dehalogenation), alcohols (Dehydration), Mechanism of E1 and E2 reactions (nature of substrate and base). Oxidation of alcohols with potassium permanganate, potassium dichromate, catalytic dehydrogenation and Opppenauer oxidation and oxidation of 1,2- diols with periodic acid and lead tetra acetate. Oxidation of aldehydes and ketones with potassium permanganate, sodium hypoiodite (iodoform reaction) and 	3	Substitution Reactions	
 ractions (nitration, halogentaion, sulphonation, Friedal Crafts alkylation and acylation), directive influence of substituent's. Nucleophilic substitution reactions, alkyl, allyl and benzyl halides, substitution of halogen by some common nucleophiles. Mechanism of SN¹ and SN² reactions, free radical substitution reactions, halogenations of alkanes, allylic compounds and alkyl benzenes. Elimination, Oxidation and Reduction Reactions Alkyl halides (dehydrogenation, Saytzeff,s rule), vicinal dihalides (dehalogenation), alcohols (Dehydration), Mechanism of E1 and E2 reactions (nature of substrate and base). Oxidation of alcohols with potassium permanganate, potassium dichromate, catalytic dehydrogenation and Opppenauer oxidation and oxidation of 1,2- diols with periodic acid and lead tetra acetate. Oxidation of aldehydes and ketones with potassium permanganate, sodium hypoiodite (iodoform reaction) and 		Types of substitution reactions, Electrophilic substitution	
alkylation and acylation), directive influence of substituent's.15Nucleophilic substitution reactions, alkyl, allyl and benzyl halides, substitution of halogen by some common nucleophiles. Mechanism of SN1 and SN2 reactions, free radical substitution reactions, halogenations of alkanes, allylic compounds and alkyl benzenes.154Elimination, Oxidation and Reduction Reactions Alkyl halides (dehydrogenation, Saytzeff,s rule), vicinal dihalides (dehalogenation), alcohols (Dehydration), Mechanism of E1 and E2 reactions (nature of substrate and base). Oxidation of alcohols with potassium permanganate, potassium dichromate, catalytic dehydrogenation and Opppenauer oxidation and oxidation of 1,2- diols with periodic acid and lead tetra acetate. Oxidation of aldehydes and ketones with potassium permanganate, sodium hypoiodite (iodoform reaction) and15		reactions, General mechanism of electrophilic substitution	
Nucleophilic substitution reactions, alkyl, allyl and benzyl halides, substitution of halogen by some common nucleophiles. Mechanism of SN ¹ and SN ² reactions, free radical substitution reactions, halogenations of alkanes, allylic compounds and alkyl benzenes. 4 Elimination, Oxidation and Reduction Reactions Alkyl halides (dehydrogenation, Saytzeff,s rule), vicinal dihalides (dehalogenation), alcohols (Dehydration), Mechanism of E1 and E2 reactions (nature of substrate and base). Oxidation of alcohols with potassium permanganate, potassium dichromate, catalytic dehydrogenation and Opppenauer oxidation and oxidation of 1,2- diols with periodic acid and lead tetra acetate. Oxidation of aldehydes and ketones with potassium permanganate, sodium hypoiodite (iodoform reaction) and		ractions (nitration, halogentaion, sulphonation, Friedal Crafts	
 halides, substitution of halogen by some common nucleophiles. Mechanism of SN¹ and SN² reactions, free radical substitution reactions, halogenations of alkanes, allylic compounds and alkyl benzenes. Elimination, Oxidation and Reduction Reactions Alkyl halides (dehydrogenation, Saytzeff,s rule), vicinal dihalides (dehalogenation), alcohols (Dehydration), Mechanism of E1 and E2 reactions (nature of substrate and base). Oxidation of alcohols with potassium permanganate, potassium dichromate, catalytic dehydrogenation and Opppenauer oxidation and oxidation of 1,2- diols with periodic acid and lead tetra acetate. Oxidation of aldehydes and ketones with potassium permanganate, sodium hypoiodite (iodoform reaction) and 		alkylation and acylation), directive influence of substituent's.	15
Mechanism of SN1 and SN2 reactions, free radical substitution reactions, halogenations of alkanes, allylic compounds and alkyl benzenes.Elimination, Oxidation and Reduction ReactionsAlkyl halides (dehydrogenation, Saytzeff,s rule), vicinal dihalides (dehalogenation), alcohols (Dehydration), Mechanism of E1 and E2 reactions (nature of substrate and base). Oxidation of alcohols with potassium permanganate, potassium dichromate, catalytic dehydrogenation and Opppenauer oxidation and oxidation of 1,2- diols with periodic acid and lead tetra acetate. Oxidation of aldehydes and ketones with potassium permanganate, sodium hypoiodite (iodoform reaction) and15		Nucleophilic substitution reactions, alkyl, allyl and benzyl	
reactions, halogenations of alkanes, allylic compounds and alkyl benzenes. Elimination, Oxidation and Reduction Reactions Alkyl halides (dehydrogenation, Saytzeff,s rule), vicinal dihalides (dehalogenation), alcohols (Dehydration), Mechanism of E1 and E2 reactions (nature of substrate and base). Oxidation of alcohols with potassium permanganate, potassium dichromate, catalytic dehydrogenation and Opppenauer oxidation and oxidation of 1,2- diols with periodic acid and lead tetra acetate. Oxidation of aldehydes and ketones with potassium permanganate, sodium hypoiodite (iodoform reaction) and		halides, substitution of halogen by some common nucleophiles.	
benzenes. 4 Elimination, Oxidation and Reduction Reactions Alkyl halides (dehydrogenation, Saytzeff,s rule), vicinal dihalides (dehalogenation), alcohols (Dehydration), Mechanism of E1 and E2 reactions (nature of substrate and base). Oxidation of alcohols with potassium permanganate, potassium dichromate, catalytic dehydrogenation and Opppenauer oxidation and oxidation of 1,2- diols with periodic acid and lead tetra acetate. Oxidation of aldehydes and ketones with potassium permanganate, sodium hypoiodite (iodoform reaction) and 15		Mechanism of SN ¹ and SN ² reactions, free radical substitution	
4Elimination, Oxidation and Reduction ReactionsAlkyl halides (dehydrogenation, Saytzeff,s rule), vicinal dihalides (dehalogenation), alcohols (Dehydration), Mechanism of E1 and E2 reactions (nature of substrate and base). Oxidation of alcohols with potassium permanganate, potassium dichromate, catalytic dehydrogenation and Opppenauer oxidation and oxidation of 1,2- diols with periodic acid and lead tetra acetate. Oxidation of aldehydes and ketones with potassium permanganate, sodium hypoiodite (iodoform reaction) and15		reactions, halogenations of alkanes, allylic compounds and alkyl	
Alkyl halides (dehydrogenation, Saytzeff,s rule), vicinal dihalides (dehalogenation), alcohols (Dehydration), Mechanism of E1 and E2 reactions (nature of substrate and base). Oxidation of alcohols with potassium permanganate, potassium dichromate, catalytic dehydrogenation and Opppenauer oxidation and oxidation of 1,2- diols with periodic acid and lead tetra acetate. Oxidation of aldehydes and ketones with potassium permanganate, sodium hypoiodite (iodoform reaction) and		benzenes.	
dihalides (dehalogenation), alcohols (Dehydration), Mechanism of E1 and E2 reactions (nature of substrate and base). Oxidation of alcohols with potassium permanganate, potassium dichromate, catalytic dehydrogenation and Opppenauer oxidation and oxidation of 1,2- diols with periodic acid and lead tetra acetate. Oxidation of aldehydes and ketones with potassium permanganate, sodium hypoiodite (iodoform reaction) and	4	Elimination, Oxidation and Reduction Reactions	
of E1 and E2 reactions (nature of substrate and base). Oxidation of alcohols with potassium permanganate, potassium dichromate, catalytic dehydrogenation and Opppenauer oxidation and oxidation of 1,2- diols with periodic acid and lead tetra acetate. Oxidation of aldehydes and ketones with potassium permanganate, sodium hypoiodite (iodoform reaction) and		Alkyl halides (dehydrogenation, Saytzeff,s rule), vicinal	
of alcohols with potassium permanganate, potassium dichromate, catalytic dehydrogenation and Opppenauer oxidation and oxidation of 1,2- diols with periodic acid and lead tetra acetate. Oxidation of aldehydes and ketones with potassium permanganate, sodium hypoiodite (iodoform reaction) and		dihalides (dehalogenation), alcohols (Dehydration), Mechanism	
dichromate, catalytic dehydrogenation and Opppenauer oxidation and oxidation of 1,2- diols with periodic acid and lead tetra acetate. Oxidation of aldehydes and ketones with potassium permanganate, sodium hypoiodite (iodoform reaction) and		of E1 and E2 reactions (nature of substrate and base). Oxidation	
oxidation and oxidation of 1,2- diols with periodic acid and lead tetra acetate. Oxidation of aldehydes and ketones with potassium permanganate, sodium hypoiodite (iodoform reaction) and15		of alcohols with potassium permanganate, potassium	
tetra acetate. Oxidation of aldehydes and ketones with potassium15permanganate, sodium hypoiodite (iodoform reaction) and		dichromate, catalytic dehydrogenation and Opppenauer	
permanganate, sodium hypoiodite (iodoform reaction) and		oxidation and oxidation of 1,2- diols with periodic acid and lead	1.5
		tetra acetate. Oxidation of aldehydes and ketones with potassium	15
Baeyer- villager oxidation.		permanganate, sodium hypoiodite (iodoform reaction) and	
		Baeyer- villager oxidation.	

	Reduction of aldehydes and ketones, Catalytic hydrogenation,
	reduction with sodium borohydride, lithium aluminium hydride,
	Clemmensen, and Wolff- kishner reduction. Reduction of
	carboxylic acids and their derivatives, lithium aluminium
	hydride, sodium- ethanol and Rosenmund reduction. Reduction
	of nitro compounds, Acidic, alkaline and neutral reducing
	agents, lithium aluminium hydride and electrolytic reduction.
Exan	nination and Evaluation Pattern :
Text	Books and References :
1	I. L. Finar: Organic Chemistry (Vol. I & II), E. L. B. S.
2	R. T. Morrison & R. N. Boyd: Organic Chemistry, Pearson
	Education.
3	Arun Bahl and B. S. Bahl : Advanced Organic Chemistry, S.
	Chand
4	Peter Sykes: A Guide Book to Mechanism in Organic Chemistry,
	Orient Longman.
5	Eliel, E. L. & Wilen, S. H. Stereochemistry of Organic
	Compounds; Wiley: London, 1994. 6. T. W. Graham Solomon's
	Organic Chemistry, John Wiley and Sons.
6	P.S. Kalsi, Stereochemistry, Conformation and Mechanism,
	John Wiley and Sons. 8. D. Nasipuri, Stereochemistry of Organic
	Compounds, New Age International Publishers

Course Code	BSCH150CCP	Semester
Course title	Conceptual Organic Chemistry	1
Scheme of Instruc	tion	Scheme of Examination
Total Duration	: 60Hr	Maximum Score : 50
Periods /Week	: 4	Internal Evaluation : 15
Credits	: 2	End Semester : 35
Instruction Mode	: Lecture /Demonstration	Exam Duration : 3 Hrs

Course Objectives: Synthesis and qualitative analysis of organic compounds as well as the identification of inorganic elements.

Course Outcomes: Understanding the utility of qualitative inorganic and organic analysis procedures.

Unit	Course Content	Instruction
		Hours
	List of Experiments:	
	1. Detection of elements (X, N, S)	
	2. Functional group tests for alcohols, phenols, carbonyl and	
	carboxylic acid group	
	3. Qualitative analysis of unknown organic compounds containing	
	simple functional groups (alcohols, carboxylic acids, phenols and	
	carbonyl compounds)	
	4. Determination of optical activity by using polarimeter	60Hrs
	5. To prepare p-bromo acetanilide	
	6. Nitration of nitrobenzene	
	7. Semicarbazone derivative of one the following compounds:	
	acetone, ethyl methyl ketone, diethylketone, cyclohexanone,	
	benzaldehyde.	
	8. Oxidation of benzaldehyde by using alkaline potassium	
	permanganate.	
Evor	ination and Evaluation Pattern :	
Exam		
Text	Books and References :	

1	Furniss, B.S.; Hannaford, A.J.; Smith, P.W.G.; Tatchell, A.R.	
	Practical Organic Chemistry, 5th Ed., Pearson (2012)	
2	Ahluwalia, V.K. & Aggarwal, R. Comprehensive Practical	
	Organic Chemistry: Preparation and Quantitative Analysis,	
	University Press (2000).	

Course Code

	BCH 201CCT	Semester		
Course Title	Molecules of Life	2		
Scheme of Instruc	tion	Scheme of Examination		
Total Duration	: 60Hr	Maximum Score : 100		
Periods /Week	: 4	Internal Evaluation : 30		
Credits	: 4	End Semester : 70		
Instruction Mode	: Lecture	Exam Duration : 3 Hrs		

Course Objectives: In -depth studies regarding classification, properties and uses of biomolecules.

Course Outcomes: Better understanding about the relationship between structures and chemical properties of biomolecules. Significance of biomolecules and their applications in daily human life

Unit	Course Content	Instruction Hours
1	Carbohydrates:	
	Introduction, Classification of carbohydrates, Reducing and non-	
	reducing sugars, General properties of glucose and fructose,	
	their open chain structure. Epimers, anomers and muta rotation.	
	Determination of configuration of glucose (Fischer proof).	15
	Cyclic structure of glucpse. Haworth projections. Cyclic	
	structure of fructose. Chain lengthening and chain shortening of	
	aldoses. Linkage between monosachharides, structure of	
	disachharides (sucrose, maltose, lactose) and polysachhharides	
	(starch and cellulose) excluding their structure elucidation.	
2	Amino Acids, Peptides and Proteins:	
	Introduction, Classification of amino acids, general properties	
	of amino acids, Zwitterions structure and isoelectric point.	15
	Peptides, classification of peptides, Synthesis of simple peptides	
	up to dipeptides, Merrifield solid phase peptide synthesis.	
	Classification of proteins, Denaturation and renaturation of	
	proteins, Overview of primary, secondary , tertiary and	

	quaternary structure of proteins, determination of n- terminal	
	amino acid by DNFB and Edman method.	
3	Vitamins and Nucleic Acids:	
5		
	Classification of vitamins, Sources of vitamins, diseases caused	
	by deficiency of vitamins, Detail study of structure of vitamin A	15
	and C. Components of Nucleic acids, Adenine, guanine,	15
	thymine and cytosine (structure only), other components of	
	nucleic acids, Nucleosides and nucleotides (nomenclature),	
	structure of polynucleotide's, Structure of DNA (Watson- crick	
	model) and RNA and its type, Difference between DNA and	
	RNA.	
4	Lipids, Oil and Fats:	
	Introduction to lipids, classification of lipids, Common fatty	
	acids present in oils and fats, omega fatty acids, trans fats,	
	hydrogenation, saponification value, Iodine number, Biological	
	importance of triglycerides, phospholipids, glycolipids and	
	steroids (cholesterol).	15
Exan	nination and Evaluation Pattern :	
Text	Books and References :	
1	Morrison, R. T. & Boyd, R. N. Organic Chemistry, Dorling	
	Kindersley (India) Pvt. Ltd. (Pearson Education)	
2	Finar, I. L. Organic Chemistry (Volume 1), Dorling Kindersley	
	(India) Pvt. Ltd. (Pearson Education).	
3	Arun Bahl and B. S. Bahl : Advanced Organic Chemistry, S.	
	Chand	
4	Finar, I. L. Organic Chemistry (Volume 2), Dorling Kindersley	
	(India) Pvt. Ltd. (Pearson Education).	
5	Nelson, D. L. & Cox, M. M. Lehninger's Principles of	
	Biochemistry 7th Ed., W. H. Freeman	
6	Berg, J. M., Tymoczko, J. L. & Stryer, L. Biochemistry 7th Ed.,	
	W. H. Freeman.	

Course Code BSCH 250CCT

Course Title Molecules of Life

Scheme of Instruction

Total Duration	:	60Hr
Periods /Week	:	4
Credits	:	2
Instruction Mode	:	Lecture /Demonstration

2

Semester

Scheme of Examination	
Maximum Score	: 50
Internal Evaluation	: 15
End Semester	: 35
Exam Duration	: 3 Hrs

Course Objectives: Identification, separation and determination of organic compounds of pharmaceutical importance.

Course Outcomes: The students will be capable to use chromatographic as well as volumetric methods for determination of biomolecules in different matrices.

Unit	Course Content	Instruction
		Hours
	List of Experiments:	
	1. Separation of amino acids by paper chromatography	60Hrs
	2. To determine the concentration of glycine solution by formylation	
	method. 3. Study of titration curve of glycine	
	4. Resolution of water soluble vitamins from their by normal	
	phase silica thin layer chromatography (NTLC)	
	5. To determine the saponification value of an oil/fat.	
	6. To determine the iodine value of an oil/fat	
	7. Differentiate between a reducing/nonreducing sugar.	
	8. Synthesis of aspirin by acetylation of salicylic acid and	
	application of TLC for its identification in drug sample.	
Exam	ination and Evaluation Pattern :	
Text	Books and References :	
1	Furniss, B.S.; Hannaford, A.J.; Smith, P.W.G.; Tatchell, A.R.	
	Practical Organic Chemistry, 5th Ed., Pearson (2012)	
2	Ahluwalia, V.K. & Aggarwal, R. Comprehensive Practical	
	Organic Chemistry: Preparation and Quantitative Analysis,	
	University Press (2000).	
3	Mann, F.G. & Saunders, B.C. Practical Organic Chemistry,	
	Pearson Education (2009)	

Semester-3

Course Code BCH 301CCT Course Title Chemical Bonding, Transition Metals & Coordination Chemistry Scheme of Instruction Scheme of Examination Total Duration : 60Hr Maximum Score : 100 Periods /Week : 4 Internal Evaluation : 30 Credits : 4 End Semester : 70 Instruction Mode : Lecture Exam Duration : 3 Hrs

Course Objectives: Extended physico- chemical knowledge about chemical bonding, transition elements and coordination chemistry.

Course Outcomes: Better understanding about the formation of organic and inorganic compounds through chemical bonding. Conceptual knowledge of complex compounds and physical as well as chemical aspects of transition metals.

Unit	Course Content	Instruction
		Hours
1	Chemical Bonding	
	Valence bond approach, Concept of resonance in various organic	
	inorganic compounds, Hybridization and structure, equivalent and m	
	equivalent hybrid orbital's, Bent's rule and its applications, VSE	
	model for predicting shapes of molecules and ions containing lone p	15
	sigma and pi bonds. LCAO method, symmetry and overlap for $s-s$,	
	and p-p combinations, MO treatment of homonuclear diatomic molect	
	of 2^{nd} period (B ₂ , C ₂ , N ₂ , O ₂ , F ₂) and heteronuclear di-atomic molect	
	(CO, NO) and their ions. Van der Waals forces, Hydrogen bonding	
	its applications, effects of these forces on melting point boiling point	
	solubility.	
2	Transition Elements (3d series)	

	Definition of transition Elements, General electronic configuration	
	of transition elements, Classification of transition elements ,	15
	Physico- chemical properties of transition elements with reference	
	to electronic configuration, variable oxidation state (first and second	
	transition series), Ionisation energy, complex formation, magnetic	
	properties, catalytic properties, alloys formation and interstitial	
	compound formation, Preparation, properties and uses of KMnO4	
	and K ₂ Cr ₂ O ₇ . Structure of K ₂ Cr ₂ O ₇ and K ₂ CrO ₄ .	
3	Coordination chemistry	
	Double salt, Complex compounds, Difference between double salts	
	and complex compounds, Types of complex compounds, Basic	
	terminology of coordination chemistry (ligands, types of ligands,	15
	central metal ion, oxidation state, coordination number), Werners	
	theory of complex compounds, IUPAC nomenclature of complex	
	compounds (Mono nuclear complex), Factors affecting the stability	
	of complex compounds, Isomerism in complex compounds,	
	Applications of complex compounds in analytical chemistry,	
	biological system and medicine. Bonding in complex compounds,	
	Valence bond theory, EAN rule.	
4	Crystal Field Theory	
	Introduction, Crystal field effect, Crystal field splitting diagram for	
	tetrahedral and octahedral complex. octahedral symmetry. Crystal	
	field stabilization energy (CFSE), Crystal field effects for weak and	
	strong fields. Tetrahedral symmetry. Factors affecting the magnitude	
	of D. Spectrochemical series. Comparison of CFSE for Oh and Td	15
	complexes, Tetragonal distortion of octahedral geometry	
Exam	ination and Evaluation Pattern :	
	Books and References :	
1	James E. Huheey, "Inorganic Chemistry: Principles of structure and	
	reactivity", Prentice Hall, IV Edition.	
2	D. S. Shriver and P.A. Atkins, "Inorganic Chemistry", Oxford	
	University Press, IV Edition	

3	Alan G. Sharpe, "Inorganic Chemistry", University of Cambridge,	
	III Edition.	
4	J. D. Lee, "A New Concise Inorganic Chemistry", ELBS IV Edition	
5	B. Douglas, D. H. McDaniel and J. J. Alexander, "Concepts and	
	Models of Inorganic Chemistry", John Wiley and Sons, III Edition	
6	Rodgers, G.E. Inorganic & Solid State Chemistry, Cengage Learning	
	India Ltd., 2008.	

Course CodeBSCH 350CCPSemester- 3Course TitleChemical Bonding, Transition Metals & Coordination
Chemistry

Scheme of Instruc	ction	Scheme of Examina	tion
Total Duration	: 60Hr	Maximum Score	: 50
Periods /Week	: 4	Internal Evaluation	: 15
Credits	: 2	End Semester	: 35
Instruction Mode	: Lecture /Demonstration	Exam Duration :	3 Hrs

Course Objectives: Preparation of standard solutions, standardization of secondary standards and the determination of desired constituent in a sample.

Course Outcomes: Abreast with different units of concentration of solution, standardization processs and application of redox reactions in chemical analysis.

Unit	Cou	urse Content	Instruction Hours
	List	of Experiments:	
	1.	Standardization of NaOH solution (standard solution of oxalic acid to be prepared)	60Hrs
	2.	Determination of concentration of carbonate and bicarbonate present in a mixture.	
	3.	Standardization of KMnO4 solution (standard solution of Mohr's salt to be prepared).	
	4.	Determination of concentration of Fe(II) in Mohr's salt and/or K2Cr2O7 using diphenylamine/ N- phenylanthranilic acid as internal indicator (standard	
	5.	solution of K2Cr2O7 and /or Mohr's salt to be prepared). Determination of concentration of Mg (II) & Zn (II) by titrimetric method using EDTA.	

	6. Determination of iron content in ores / alloys using
	appropriate redox titration.
	7. Determination of concentration of total hardness of a given
	sample of water by complexometric titration
	8. Preparation of complex compounds
	i)Tetraamminecarbonatocobalt (III) ion ii) Potassium
	tris(oxalate)ferrate(III), iii) Tetraamminecopper (II)
	sulphate,
Exan	nination and Evaluation Pattern :
Text	Books and References :
1	Mendham, J., A. I. Vogel's Quantitative Chemical Analysis 6th
	Ed., Pearson, 2009
2	Vogel, A.I. A Textbook of Quantitative Inorganic Analysis,
	ELBS.
3	Harris, D.C. & Freeman, W.H. & Co. Quantitative Chemical
	Analysis 7th Ed., New York

Course Code BCH 401CCT

Semester

Course Title Physical Chemistry for the Biosciences

Scheme of Instruct	ion	Scheme of Examinat	tion
Total Duration :	60Hr	Maximum Score	: 100
Periods /Week :	4	Internal Evaluation	: 30
Credits :	4	End Semester	: 70
Instruction Mode:	Lecture	Exam Duration	: 3 Hrs

Course Objectives: Studies of thermal and kinetic aspects of chemical reactions.

Course Outcomes: Accumulation of knowledge about the roles of temperature, pH, reaction media and catalysis on the progress of chemical reactions.

Unit	Course Content	Instruction
		Hours
1	Chemical Energetics	
	Laws of Thermodynamics, important principles and definitions of	
	thermochemistry. Concept of standard state and standard enthalpies	
	of formation, integral and differential enthalpies of solution and	
	dilution. Calculation of bond energy, bond dissociation energy and	15
	resonance energy from thermochemical data. Variation of enthalpy	15
	of a reaction with temperature - Kirchhoff's equation. Statement of	
	Third Law of thermodynamics and calculation of absolute entropies	
	of substances.	
2	Chemical and Ionic Equilibrium	
	Free energy change in a chemical reaction. Thermodynamic	
	derivation of the law of chemical equilibrium. Distinction between	
	ΔG and ΔGo , Le Chatelier's principle. Relationships between Kp,	
	Kc and Kx for reactions involving ideal gases.	
	Strong, moderate and weak electrolytes, degree of ionization, factors	15
	affecting degree of ionization, ionization constant and ionic product	
	of water. Ionization of weak acids and bases, pH scale, common ion	
	effect. Salt hydrolysis-calculation of hydrolysis constant, degree of	
	hydrolysis of different salts. Buffer solutions. Solubility and	
	solubility product of sparingly soluble salts.	
3	Chemical Kinetics	

4

	Rate of reaction, Unit of rate of reaction, rate constant and specific	
	rate constant, Rate law, Order of reaction, Differential and integrated	
	form of rate expression up to second order reaction, Experimental	15
	methods of determination of rate laws, kinetics of complex reaction	
	(integrated rate expression up to first order only), Molecularity of a	
	reaction, Molecularity of a complex reaction. Temperature	
	dependence of reaction rates, Arrhenius equation, Activation energy,	
	Deferent methods of calculation of activation energy. Collision	
	theory of reaction rate. Numerical problem based on activation	
	energy.	
4	Surface Chemistry and Colloids	
	Adsorption, Absorption, Types of adsorption, Difference between	
	physical and chemical adsorption, Factors affecting adsorption,	
	adsorption isotherms, Freundlich and Langmuir adsorption	
	isotherms, Applications of adsorption.	
	Difference between collods and true solution. Classification of	15
	colloids on the basis of nature of dispersed phase and dispersion	
	medium, on the basis of interaction between dispersed phase and	
	dispersion medium, Methods of preparation of colloids by Chemical	
	methods, Properties of colloids, Brownian movement, Tyndal effect,	
	Electrophoresis, Gold number, Application of colloids, Emulsion,	
	types of emulsion, Identification of emulsion, application of	
	emulsion.	
Exan	nination and Evaluation Pattern :	L
Text	Books and References :	
1	Atkins, P. W. & Paula, J. de Atkin's Physical Chemistry 9th Ed.,	
	Oxford University Press (2011)	
2	Ball, D. W. Physical Chemistry Thomson Press, India (2007).	
3	Alan G. Sharpe, "Inorganic Chemistry", University of	
	Cambridge, III Edition.	
4	Castellan, G. W. Physical Chemistry 4th Ed. Narosa (2004).	
5	Chang, R. Physical Chemistry for the Biosciences. University	
	Science Books (2005)Edition	

6 Puri & S	harma			
MANUU - Department of Chemistry School of Sciences				
Course CodeBSCH 450CCPSemester				
Course Title	Physical Chemistry for the Bioscie	ences 4		
Scheme of Instru	uction	Scheme of Examination		
Total Duration	: 60Hr	Maximum Score : 50		
Periods /Week	: 4	Internal Evaluation : 15		
Credits	: 2	End Semester : 35		
Instruction Mode	e : Lecture /Demonstration	Exam Duration : 3 Hrs		

Course Objectives: Application of thermo analytical and electro analytical techniques in quantitative analysis.

Course Outcomes: Awareness about the utility of various physico- chemical, optical and chemical methods in chemical analysis.

Unit	Course Content	Instruction
		Hours
	List of Experiments:	
	1.Determination of heat capacity of a calorimeter for different volumes.	60Hrs
	2. Determination of the enthalpy of neutralization of hydrochloric acid with sodium hydroxide.	
	3. Preparation of sodium acetate-acetic acid buffer solutions and measurement of their pH.	
	4. Potentiometric titrations of (i) strong acid vs strong base (ii) weak acid vs strong base	
	5. Determination of dissociation constant of a weak acid.	
	6. Integrated rate method: a. Acid hydrolysis of methyl acetate with hydrochloric acid. b. Saponification of ethyl acetate	
	7. Verification of Lambert-Beer's Law for potassium dichromate/ potassium permanganate solution.	
	8. Verify the Freundlich and Langmuir isotherms for adsorption	
	of acetic acid on activated charcoal.	
Exam	ination and Evaluation Pattern :	
Text	Books and References :	

1	Khosla, B.D.; Garg, V.C.; Gulati, A. & Chand, R. Senior	
	Practical Physical Chemistry, New Delhi	

Course Code	BCH 502 DST	Semester	
Course Title	Analytical Methods in Chemistry	5	
Scheme of Instru	iction	Scheme of Examination	
Total Duration	: 60Hr	Maximum Score : 100	
Periods /Week	: 4	Internal Evaluation : 30	
Credits	: 4	End Semester : 70	
Instruction Mode	e : Lecture	Exam Duration : 3 Hrs	

Course Objectives:

To kindle confidence in students for better understanding of basic concepts of classical and modern analytical methods of chemical analysis as well as to keep abreast with developments of recent techniques of analysis.

Outcomes : The knowledge of fundamental principles of each analytical method of analysis with possible applications will induce great confidence among students to utilize different analytical techniques in chemical analysis.

Unit	Course Content	Instruction Hours
1	Analytical Chemistry and Statistical Analysis of Analytical	
	Data	
	Introduction and importance of analytical chemistry. Role of	
	instrumentation in chemical analysis. Collection, arrangement	
	and analysis of analytical data. Types and sources of errors of	15

	analytical data, determinate and indeterminate errors, absolute	
	and relative errors. Normal (or Gaussian error cure), accuracy	
	and precision, statistical terms (mean, median, median	
	deviation, standard deviation and variance). criteria of validity	
	or rejection of result. Numerical problems.	
2	UV- Visisble spectrometry: Interaction of radiation with	
	matter and types of electron transitions. Chromophores and	
	auxochrome groups. UV- Visible spectrometry : Validity of	15
	Beer- Lambert's law. Basic principles of instrumentation (
	choice of source, monochromator and detector), Single and	
	double beam instruments. Application in quantitative analysis,	
	estimation of metal ions from aqueous solution, geometrical	
	isomers, determination of composition of metal complexes	
	using Job's method of continuous variation and mole ratio	
	methods. Deviation from Beer,s law and photometric titrations.	
3	IR and atomic Absorption / Emission Techniques:	
	Infrared spectrometry; basic principles of instrumentation (
	choice of source, monochromator & detector) for single and	
	double beam instruments, sampling techniques. Structural	15
	illustration through interpretation of data, effect of hydrogen	
	bonding. Flame atomic absorption and emission spectrometry:	
	principle and applications in quantitative estimation of trace	
	level of metal ions from water samples. Sources of chemical	
	interferences and their methods of removal.	
4	Separation Techniques :	
	Qualitative and quantitative aspects of solvent extraction:	
	extraction of metal ions from aqueous solution, extraction of	
	organic species from the aqueous and non- aqueous media.	
	Chromatography: Classification, principle and efficiency of the	
	technique. Mechanism of separation: adsorption, partition & ion	15
	- exchange mechanism. Bonded phases and reversed phase	
	chromatography. Qualitative and quantitative aspects of	
	chromatographic methods (IEC, GLC, GPC and HPLC /	

Exam	HPTLC). Chromatographic parameters(capacity factor, separation factor and resolution). Applications of chromatography techniques in metal ion separation, deionization of water and analysis of polymers, pharmaceutical products, bimoleculess and stereoisomer's.	
Text	Books and References :	
1	E. Stocchi: Industrial Chemistry, Vol-I, Ellis Horwood Ltd. UK.	
2	R.M. Felder, R.W. Rousseau: Elementary Principles of	
	Chemical Processes, Wiley Publishers, New Delhi.	
3	S. S. Dara: A Textbook of Engineering Chemistry, S. Chand &	
	Company Ltd. New Delhi.	
4	A.K. De, Environmental Chemistry: New Age International	
	Pvt., Ltd, New Delhi.	
5	A. Mishra, Environmental Studies. Selective and Scientific	
	Books, New Delhi (2005).	
6	S. M. Khopkar, Environmental Pollution Analysis: Wiley	
	Eastern Ltd, New Delhi.	

Course Code	BCH 601DST	Semester
Course Title	Bioinorganic & Environmental Cher	nistry 6
Scheme of Instruc	ction	Scheme of Examination
Total Duration	: 60Hr	Maximum Score : 100
Periods /Week	: 4	Internal Evaluation : 30
Credits	: 4	End Semester : 70
Instruction Mode	: Lecture	Exam Duration : 3 Hrs

Course Objectives: Impact of inorganic metal ions and air pollutants on environment and human health. Remedial steps for pollution control.

Course Outcomes: Better understanding about the composition of atmosphere, hydrosphere and biosphere. Awareness about the impact of inorganic ions on environment and human health. Concept of green chemistry in pollution control.

Unit	Course Content	Instruction Hours
1	Bio-Inorganic Chemistry	
	A brief introduction to bio-inorganic chemistry. Role of metal	
	ions present in biological systems with special reference to Na ⁺ ,	
	K^+ and Mg^{2+} ions: Na/K pump; Role of Mg^{2+} ions in energy	15
	production and chlorophyll. Role of Ca ²⁺ in blood clotting,	
	stabilization of protein structures and structural role (bones).	
2	Environment and its segments	
	Ecosystems. Biogeochemical cycles of carbon, nitrogen and	
	sulphur.	
	Air Pollution: Major regions of atmosphere. Chemical and	15
	photochemical reactions in atmosphere. Air pollutants: types,	15
	sources, particle size and chemical nature; Photochemical smog:	
	its constituents and photochemistry. Environmental effects of	
	ozone, Major sources of air pollution SO ₂ , CO ₂ , CO, NOx, H ₂ S	

Sources and nature of water pollutants, Techniques for measuring water pollution, Impacts of water pollution on hydrological and ecosystems. Water purification methods. Industrial effluents from the following industries and their treatment: electroplating, textile, tannery, dairy, petroleum and petrochemicals, agro, fertilizer, etc. Sludge disposal. Water treatment and purification (reverse osmosis, electro dialysis, ion exchange). Water quality parameters for waste water, industrial water and domestic water.			
vegetation. Greenhouse effect and Global warming, Ozone depletion by oxides of nitrogen, chlorofluorocarbons and Halogens, removal of sulphur from coal. Control of particulates. 3 Water Pollution Sources and nature of water pollutants, Techniques for measuring water pollution, Impacts of water pollution on hydrological and ecosystems. Water purification methods. Industrial effluents from the following industries and their treatment: electroplating, textile, tannery, dairy, petroleum and petrochemicals, agro, fertilizer, etc. Sludge disposal. Water treatment and purification (reverse osmosis, electro dialysis, ion exchange). Water quality parameters for waste water, industrial water and domestic water. 4 Energy & Environment Sources of energy: Coal, petrol and natural gas. Nuclear Fusion / Fission, Solar energy, Hydrogen, Nuclear Pollution: Disposal of nuclear waste, nuclear disaster and its management. Introduction to biocatalysis: Importance in "Green Chemistry" and Chemical Industry. 15 Examination and Evaluation Pattern : Text Books and References : 1 E. Stocchi: Industrial Chemistry, Vol-I, Ellis Horwood Ltd. UK. 2 R.M. Felder, R.W. Rousseau: Elementary Principles of <td></td> <td>and other foul smelling gases. Methods of estimation of CO,</td> <td></td>		and other foul smelling gases. Methods of estimation of CO,	
depletion by oxides of nitrogen, chlorofluorocarbons and Halogens, removal of sulphur from coal. Control of particulates. 3 Water Pollution Sources and nature of water pollutants, Techniques for measuring water pollution, Impacts of water pollution on hydrological and ecosystems. Water purification methods. Industrial effluents from the following industries and their treatment: electroplating, textile, tannery, dairy, petroleum and petrochemicals, agro, fertilizer, etc. Sludge disposal. Water treatment and purification (reverse osmosis, electro dialysis, ion exchange). Water quality parameters for waste water, industrial water and domestic water. 15 4 Energy & Environment Sources of energy: Coal, petrol and natural gas. Nuclear Fusion / Fission, Solar energy, Hydrogen, Nuclear Pollution: Disposal of nuclear waste, nuclear disaster and its management. Introduction to biocatalysis: Importance in "Green Chemistry" and Chemical Industry. 15 Examination and Evaluation Pattern : 15 Text Books and References : 1 1 E. Stocchi: Industrial Chemistry, Vol-I, Ellis Horwood Ltd. UK. 2 R.M. Felder, R.W. Rousseau: Elementary Principles of Chemical Processes, Wiley Publishers, New Delhi. 3 S. S. Dara: A Textbook of Engineering Chemistry, S. Chand & Company Ltd. New Delhi. 4 A.K. De, Environmental Chemistry: New Age International Pvt., Ltd, New Delhi.		NOx, SOx Effects of air pollution on living organisms and	
Halogens, removal of sulphur from coal. Control of particulates. 3 Water Pollution Sources and nature of water pollutants, Techniques for measuring water pollution, Impacts of water pollution on hydrological and ecosystems. Water purification methods. Industrial effluents from the following industries and their treatment: electroplating, textile, tannery, dairy, petroleum and petrochemicals, agro, fertilizer, etc. Sludge disposal. Water treatment and purification (reverse osmosis, electro dialysis, ion exchange). Water quality parameters for waste water, industrial water and domestic water. 15 4 Energy & Environment Sources of energy: Coal, petrol and natural gas. Nuclear Fusion / Fission, Solar energy, Hydrogen, Nuclear Pollution: Disposal of nuclear waste, nuclear disaster and its management. Introduction to biocatalysis: Importance in "Green Chemistry" and Chemical Industry. 15 Examination and Evaluation Pattern : 15 Text Books and References : 1 1 E. Stocchi: Industrial Chemistry, Vol-I, Ellis Horwood Ltd. UK. 2 R.M. Felder, R.W. Rousseau: Elementary Principles of Chemical Processes, Wiley Publishers, New Delhi. 3 S. S. Dara: A Textbook of Engineering Chemistry, S. Chand & Company Ltd. New Delhi. 4 A.K. De, Environmental Chemistry: New Age International Pvt., Ltd, New Delhi.		vegetation. Greenhouse effect and Global warming, Ozone	
3 Water Pollution Sources and nature of water pollutants, Techniques for measuring water pollution, Impacts of water pollution on hydrological and ecosystems. Water purification methods. Industrial effluents from the following industries and their treatment: electroplating, textile, tannery, dairy, petroleum and petrochemicals, agro, fertilizer, etc. Sludge disposal. Water treatment and purification (reverse osmosis, electro dialysis, ion exchange). Water quality parameters for waste water, industrial water and domestic water. 15 4 Energy & Environment Sources of energy: Coal, petrol and natural gas. Nuclear Fusion / Fission, Solar energy, Hydrogen, Nuclear Pollution: Disposal of nuclear waste, nuclear disaster and its management. Introduction to biocatalysis: Importance in "Green Chemistry" and Chemical Industry. 15 Examination and Evaluation Pattern : Text Books and References : 15 1 E. Stocchi: Industrial Chemistry, Vol-I, Ellis Horwood Ltd. UK. 15 2 R.M. Felder, R.W. Rousseau: Elementary Principles of Chemical Processes, Wiley Publishers, New Delhi. 3 3 S. S. Dara: A Textbook of Engineering Chemistry, S. Chand & Company Ltd. New Delhi. 4 4 A.K. De, Environmental Chemistry: New Age International Pvt., Ltd, New Delhi. 5		depletion by oxides of nitrogen, chlorofluorocarbons and	
Sources and nature of water pollutants, Techniques for measuring water pollution, Impacts of water pollution on hydrological and ecosystems. Water purification methods. Industrial effluents from the following industries and their treatment: electroplating, textile, tannery, dairy, petroleum and petrochemicals, agro, fertilizer, etc. Sludge disposal. Water treatment and purification (reverse osmosis, electro dialysis, ion exchange). Water quality parameters for waste water, industrial water and domestic water. 15 4 Energy & Environment Sources of energy: Coal, petrol and natural gas. Nuclear Fusion / Fission, Solar energy, Hydrogen, Nuclear Pollution: Disposal of nuclear waste, nuclear disaster and its management. Introduction to biocatalysis: Importance in "Green Chemistry" and Chemical Industry. 15 Examination and Evaluation Pattern : 15 I E. Stocchi: Industrial Chemistry, Vol-I, Ellis Horwood Ltd. UK. 15 2 R.M. Felder, R.W. Rousseau: Elementary Principles of Chemical Processes, Wiley Publishers, New Delhi. 5 3 S. S. Dara: A Textbook of Engineering Chemistry, S. Chand & Company Ltd. New Delhi. 5 4 A.K. De, Environmental Studies. Selective and Scientific		Halogens, removal of sulphur from coal. Control of particulates.	
measuring water pollution, Impacts of water pollution on hydrological and ecosystems. Water purification methods. Industrial effluents from the following industries and their treatment: electroplating, textile, tannery, dairy, petroleum and petrochemicals, agro, fertilizer, etc. Sludge disposal. Water treatment and purification (reverse osmosis, electro dialysis, ion exchange). Water quality parameters for waste water, industrial water and domestic water. 4 Energy & Environment Sources of energy: Coal, petrol and natural gas. Nuclear Fusion / Fission, Solar energy, Hydrogen, Nuclear Pollution: Disposal of nuclear waste, nuclear disaster and its management. Introduction to biocatalysis: Importance in "Green Chemistry" and Chemical Industry. 15 Examination and Evaluation Pattern : Text Books and References : 1 1 E. Stocchi: Industrial Chemistry, Vol-I, Ellis Horwood Ltd. UK. 2 R.M. Felder, R.W. Rousseau: Elementary Principles of Chemical Processes, Wiley Publishers, New Delhi. 3 S. S. Dara: A Textbook of Engineering Chemistry, S. Chand & Company Ltd. New Delhi. 4 A.K. De, Environmental Chemistry: New Age International Pvt.,	3	Water Pollution	
hydrological and ecosystems. Water purification methods. Industrial effluents from the following industries and their treatment: electroplating, textile, tannery, dairy, petroleum and petrochemicals, agro, fertilizer, etc. Sludge disposal. Water treatment and purification (reverse osmosis, electro dialysis, ion exchange). Water quality parameters for waste water, industrial water and domestic water. 15 4 Energy & Environment Sources of energy: Coal, petrol and natural gas. Nuclear Fusion / Fission, Solar energy, Hydrogen, Nuclear Pollution: Disposal of nuclear waste, nuclear disaster and its management. Introduction to biocatalysis: Importance in "Green Chemistry" and Chemical Industry. 15 Examination and Evaluation Pattern : 15 Text Books and References : 1 1 E. Stocchi: Industrial Chemistry, Vol-I, Ellis Horwood Ltd. UK. 2 R.M. Felder, R.W. Rousseau: Elementary Principles of Chemical Processes, Wiley Publishers, New Delhi. 3 S. S. Dara: A Textbook of Engineering Chemistry, S. Chand & Company Ltd. New Delhi. 4 A.K. De, Environmental Chemistry: New Age International Pvt., Ltd, New Delhi.		Sources and nature of water pollutants, Techniques for	
Industrial effluents from the following industries and their treatment: electroplating, textile, tannery, dairy, petroleum and petrochemicals, agro, fertilizer, etc. Sludge disposal. Water treatment and purification (reverse osmosis, electro dialysis, ion exchange). Water quality parameters for waste water, industrial water and domestic water. 15 4 Energy & Environment Sources of energy: Coal, petrol and natural gas. Nuclear Fusion / Fission, Solar energy, Hydrogen, Nuclear Pollution: Disposal of nuclear waste, nuclear disaster and its management. Introduction to biocatalysis: Importance in "Green Chemistry" and Chemical Industry. 15 Examination and Evaluation Pattern : 15 Text Books and References : 1 1 E. Stocchi: Industrial Chemistry, Vol-I, Ellis Horwood Ltd. UK. 2 R.M. Felder, R.W. Rousseau: Elementary Principles of Chemical Processes, Wiley Publishers, New Delhi. 3 S. S. Dara: A Textbook of Engineering Chemistry, S. Chand & Company Ltd. New Delhi. 4 A.K. De, Environmental Chemistry: New Age International Pvt., Ltd, New Delhi. 5 A. Mishra, Environmental Studies. Selective and Scientific		measuring water pollution, Impacts of water pollution on	
15 15 reatment: electroplating, textile, tannery, dairy, petroleum and petrochemicals, agro, fertilizer, etc. Sludge disposal. Water treatment and purification (reverse osmosis, electro dialysis, ion exchange). Water quality parameters for waste water, industrial water and domestic water. 14 4 Energy & Environment Sources of energy: Coal, petrol and natural gas. Nuclear Fusion / Fission, Solar energy, Hydrogen, Nuclear Pollution: Disposal of nuclear waste, nuclear disaster and its management. Introduction to biocatalysis: Importance in "Green Chemistry" and Chemical Industry. 15 Examination and Evaluation Pattern : 15 Text Books and References : 1 1 E. Stocchi: Industrial Chemistry, Vol-I, Ellis Horwood Ltd. UK. 2 R.M. Felder, R.W. Rousseau: Elementary Principles of Chemical Processes, Wiley Publishers, New Delhi. 3 S. S. Dara: A Textbook of Engineering Chemistry, S. Chand & Company Ltd. New Delhi. 4 A.K. De, Environmental Chemistry: New Age International Pvt., Ltd, New Delhi. 5 A. Mishra, Environmental Studies. Selective and Scientific		hydrological and ecosystems. Water purification methods.	
treatment: electroplating, textile, tannery, dairy, petroleum and petrochemicals, agro, fertilizer, etc. Sludge disposal. Water treatment and purification (reverse osmosis, electro dialysis, ion exchange). Water quality parameters for waste water, industrial water and domestic water. 4 Energy & Environment Sources of energy: Coal, petrol and natural gas. Nuclear Fusion / Fission, Solar energy, Hydrogen, Nuclear Pollution: Disposal of nuclear waste, nuclear disaster and its management. Introduction to biocatalysis: Importance in "Green Chemistry" and Chemical Industry. 15 Examination and Evaluation Pattern : Text Books and References : 1 E. Stoechi: Industrial Chemistry, Vol-I, Ellis Horwood Ltd. UK. 2 R.M. Felder, R.W. Rousseau: Elementary Principles of Chemical Processes, Wiley Publishers, New Delhi. 3 S. S. Dara: A Textbook of Engineering Chemistry, S. Chand & Company Ltd. New Delhi. 4 4. K. De, Environmental Chemistry: New Age International Pvt., Ltd, New Delhi. 5 5 A. Mishra, Environmental Studies. Selective and Scientific		Industrial effluents from the following industries and their	
Image: Section of the section of th		treatment: electroplating, textile, tannery, dairy, petroleum and	15
exchange). Water quality parameters for waste water, industrial water and domestic water. 4 Energy & Environment Sources of energy: Coal, petrol and natural gas. Nuclear Fusion / Fission, Solar energy, Hydrogen, Nuclear Pollution: Disposal of nuclear waste, nuclear disaster and its management. Introduction to biocatalysis: Importance in "Green Chemistry" and Chemical Industry. 15 Examination and Evaluation Pattern : Text Books and References : 1 E. Stocchi: Industrial Chemistry, Vol-I, Ellis Horwood Ltd. UK. 2 R.M. Felder, R.W. Rousseau: Elementary Principles of Chemical Processes, Wiley Publishers, New Delhi. 3 S. S. Dara: A Textbook of Engineering Chemistry, S. Chand & Company Ltd. New Delhi. 4 A.K. De, Environmental Chemistry: New Age International Pvt., Ltd, New Delhi. 5 A. Mishra, Environmental Studies. Selective and Scientific		petrochemicals, agro, fertilizer, etc. Sludge disposal. Water	
water and domestic water. 4 Energy & Environment Sources of energy: Coal, petrol and natural gas. Nuclear Fusion / Fission, Solar energy, Hydrogen, Nuclear Pollution: Disposal of nuclear waste, nuclear disaster and its management. Introduction to biocatalysis: Importance in "Green Chemistry" and Chemical Industry. 15 Examination and Evaluation Pattern : Text Books and References : 1 E. Stocchi: Industrial Chemistry, Vol-I, Ellis Horwood Ltd. UK. 2 R.M. Felder, R.W. Rousseau: Elementary Principles of Chemical Processes, Wiley Publishers, New Delhi. 3 S. S. Dara: A Textbook of Engineering Chemistry, S. Chand & Company Ltd. New Delhi. 4 A.K. De, Environmental Chemistry: New Age International Pvt., Ltd, New Delhi. 5 A. Mishra, Environmental Studies. Selective and Scientific		treatment and purification (reverse osmosis, electro dialysis, ion	
 4 Energy & Environment Sources of energy: Coal, petrol and natural gas. Nuclear Fusion / Fission, Solar energy, Hydrogen, Nuclear Pollution: Disposal of nuclear waste, nuclear disaster and its management. Introduction to biocatalysis: Importance in "Green Chemistry" and Chemical Industry. 15 Examination and Evaluation Pattern : Text Books and References : 1 E. Stocchi: Industrial Chemistry, Vol-I, Ellis Horwood Ltd. UK. 2 R.M. Felder, R.W. Rousseau: Elementary Principles of Chemical Processes, Wiley Publishers, New Delhi. 3 S. S. Dara: A Textbook of Engineering Chemistry, S. Chand & Company Ltd. New Delhi. 4 A.K. De, Environmental Chemistry: New Age International Pvt., Ltd, New Delhi. 5 A. Mishra, Environmental Studies. Selective and Scientific 		exchange). Water quality parameters for waste water, industrial	
Sources of energy: Coal, petrol and natural gas. Nuclear Fusion / Fission, Solar energy, Hydrogen, Nuclear Pollution: Disposal of nuclear waste, nuclear disaster and its management. Introduction to biocatalysis: Importance in "Green Chemistry" and Chemical Industry. 15 Examination and Evaluation Pattern : 15 Text Books and References : 1 I E. Stocchi: Industrial Chemistry, Vol-I, Ellis Horwood Ltd. UK. 2 R.M. Felder, R.W. Rousseau: Elementary Principles of Chemical Processes, Wiley Publishers, New Delhi. 3 3 S. S. Dara: A Textbook of Engineering Chemistry, S. Chand & Company Ltd. New Delhi. 4 A.K. De, Environmental Chemistry: New Age International Pvt., Ltd, New Delhi. 5 A. Mishra, Environmental Studies. Selective and Scientific		water and domestic water.	
/ Fission, Solar energy, Hydrogen, Nuclear Pollution: Disposal of nuclear waste, nuclear disaster and its management. Introduction to biocatalysis: Importance in "Green Chemistry" and Chemical Industry. 15 Examination and Evaluation Pattern : 15 Text Books and References : 1 E. Stocchi: Industrial Chemistry, Vol-I, Ellis Horwood Ltd. UK. 2 R.M. Felder, R.W. Rousseau: Elementary Principles of Chemical Processes, Wiley Publishers, New Delhi. 3 S. S. Dara: A Textbook of Engineering Chemistry, S. Chand & Company Ltd. New Delhi. 4 A.K. De, Environmental Chemistry: New Age International Pvt., Ltd, New Delhi. 5 A. Mishra, Environmental Studies. Selective and Scientific 1	4	Energy & Environment	
of nuclear waste, nuclear disaster and its management. Introduction to biocatalysis: Importance in "Green Chemistry" and Chemical Industry. 15 Examination and Evaluation Pattern : 15 Text Books and References : 1 I E. Stocchi: Industrial Chemistry, Vol-I, Ellis Horwood Ltd. UK. 2 R.M. Felder, R.W. Rousseau: Elementary Principles of Chemical Processes, Wiley Publishers, New Delhi. 3 S. S. Dara: A Textbook of Engineering Chemistry, S. Chand & Company Ltd. New Delhi. 4 A.K. De, Environmental Chemistry: New Age International Pvt., Ltd, New Delhi. 5 A. Mishra, Environmental Studies. Selective and Scientific		Sources of energy: Coal, petrol and natural gas. Nuclear Fusion	
Introduction to biocatalysis: Importance in "Green Chemistry" and Chemical Industry.1515Examination and Evaluation Pattern :Text Books and References :1E. Stocchi: Industrial Chemistry, Vol-I, Ellis Horwood Ltd. UK.2R.M. Felder, R.W. Rousseau: Elementary Principles of Chemical Processes, Wiley Publishers, New Delhi.3S. S. Dara: A Textbook of Engineering Chemistry, S. Chand & Company Ltd. New Delhi.4A.K. De, Environmental Chemistry: New Age International Pvt., Ltd, New Delhi.5A. Mishra, Environmental Studies. Selective and Scientific		/ Fission, Solar energy, Hydrogen, Nuclear Pollution: Disposal	
and Chemical Industry.15Examination and Evaluation Pattern :15Text Books and References :1IE. Stocchi: Industrial Chemistry, Vol-I, Ellis Horwood Ltd. UK.2R.M. Felder, R.W. Rousseau: Elementary Principles of Chemical Processes, Wiley Publishers, New Delhi.3S. S. Dara: A Textbook of Engineering Chemistry, S. Chand & Company Ltd. New Delhi.4A.K. De, Environmental Chemistry: New Age International Pvt., Ltd, New Delhi.5A. Mishra, Environmental Studies. Selective and Scientific		of nuclear waste, nuclear disaster and its management.	
Examination and Evaluation Pattern : Text Books and References : 1 E. Stocchi: Industrial Chemistry, Vol-I, Ellis Horwood Ltd. UK. 2 R.M. Felder, R.W. Rousseau: Elementary Principles of Chemical Processes, Wiley Publishers, New Delhi. 3 S. S. Dara: A Textbook of Engineering Chemistry, S. Chand & Company Ltd. New Delhi. 4 A.K. De, Environmental Chemistry: New Age International Pvt., Ltd, New Delhi. 5 A. Mishra, Environmental Studies. Selective and Scientific		Introduction to biocatalysis: Importance in "Green Chemistry"	
Text Books and References : 1 E. Stocchi: Industrial Chemistry, Vol-I, Ellis Horwood Ltd. UK. 2 R.M. Felder, R.W. Rousseau: Elementary Principles of Chemical Processes, Wiley Publishers, New Delhi. 3 S. S. Dara: A Textbook of Engineering Chemistry, S. Chand & Company Ltd. New Delhi. 4 A.K. De, Environmental Chemistry: New Age International Pvt., Ltd, New Delhi. 5 A. Mishra, Environmental Studies. Selective and Scientific		and Chemical Industry.	15
 E. Stocchi: Industrial Chemistry, Vol-I, Ellis Horwood Ltd. UK. R.M. Felder, R.W. Rousseau: Elementary Principles of Chemical Processes, Wiley Publishers, New Delhi. S. S. Dara: A Textbook of Engineering Chemistry, S. Chand & Company Ltd. New Delhi. A.K. De, Environmental Chemistry: New Age International Pvt., Ltd, New Delhi. A. Mishra, Environmental Studies. Selective and Scientific 	Exan	nination and Evaluation Pattern :	
 E. Stocchi: Industrial Chemistry, Vol-I, Ellis Horwood Ltd. UK. R.M. Felder, R.W. Rousseau: Elementary Principles of Chemical Processes, Wiley Publishers, New Delhi. S. S. Dara: A Textbook of Engineering Chemistry, S. Chand & Company Ltd. New Delhi. A.K. De, Environmental Chemistry: New Age International Pvt., Ltd, New Delhi. A. Mishra, Environmental Studies. Selective and Scientific 	Text	Books and References .	
 2 R.M. Felder, R.W. Rousseau: Elementary Principles of Chemical Processes, Wiley Publishers, New Delhi. 3 S. S. Dara: A Textbook of Engineering Chemistry, S. Chand & Company Ltd. New Delhi. 4 A.K. De, Environmental Chemistry: New Age International Pvt., Ltd, New Delhi. 5 A. Mishra, Environmental Studies. Selective and Scientific 			
Chemical Processes, Wiley Publishers, New Delhi.3S. S. Dara: A Textbook of Engineering Chemistry, S. Chand & Company Ltd. New Delhi.4A.K. De, Environmental Chemistry: New Age International Pvt., Ltd, New Delhi.5A. Mishra, Environmental Studies. Selective and Scientific			
 3 S. S. Dara: A Textbook of Engineering Chemistry, S. Chand & Company Ltd. New Delhi. 4 A.K. De, Environmental Chemistry: New Age International Pvt., Ltd, New Delhi. 5 A. Mishra, Environmental Studies. Selective and Scientific 	2		
Company Ltd. New Delhi. 4 A.K. De, Environmental Chemistry: New Age International Pvt., Ltd, New Delhi. 5 A. Mishra, Environmental Studies. Selective and Scientific	2	•	
 4 A.K. De, Environmental Chemistry: New Age International Pvt., Ltd, New Delhi. 5 A. Mishra, Environmental Studies. Selective and Scientific 	3		
Ltd, New Delhi. 5 A. Mishra, Environmental Studies. Selective and Scientific	4		
5 A. Mishra, Environmental Studies. Selective and Scientific	4		
Books, New Delhi (2005).	5		
		BOOKS, New Delhi (2005).	

6	S. M. Khopkar, Environmental Pollution Analysis: Wiley	
	Eastern Ltd, New Delhi.	

CourseCode BCH551DST			Semester
Course Title	Analytical Methods in Chem	istry	6
Scheme of Instruction		Scheme of Examination	on
Total Duration : 60H	Hr	Maximum Score :	50
Periods /Week : 4		Internal Evaluation :	15
Credits : 2		End Semester	: 35
Instruction Mode : Lec	ture /Demonstration	Exam Duration :	3 Hrs

Course Objectives: To use of volumetric methods of analysis for determination of analytes of different types in water samples.

Course Outcomes: The students will understand the various steps involved in volumetric analysis and gain knowledge of deciding proper method for estimation of desired constituents in specific sample.

Unit	Course Content	Instruction Hours
	1. Determination of dissolved oxygen in water.	
	2. Determination of Chemical Oxygen Demand (COD)	
	3. Determination of Biological Oxygen Demand (BOD)	
	4. Percentage of available chlorine in bleaching powder	
	5. Measurement of chloride, sulphate and salinity of water	60
	samples by simple titration method (AgNO3 and potassium	
	chromate)	
	6. Estimation of total alkalinity of water samples (CO_3^{2-}, HCO_3^{-1})	
) using double titration method	
	7. Measurement of dissolved CO ₂ .	
	8.Preparation of borax/ boric acid. Separation of mixtures by	
	chromatography: Measure the R _f value in each case.	
	(Combination of two ions to be given).	
Exam	ination and Evaluation Pattern :	
Text	Books and References :	
1	E. Stocchi: Industrial Chemistry, Vol-I, Ellis Horwood Ltd. UK.	
2	R.M. Felder, R.W. Rousseau: Elementary Principles of	
	Chemical Processes, Wiley Publishers, New Delhi.	
3	S. S. Dara: A Textbook of Engineering Chemistry, S. Chand &	
	Company Ltd. New Delhi.	
4	A.K. De, Environmental Chemistry: New Age International Pvt.,	
	Ltd, New Delhi.	
5	A. Mishra, Environmental Studies. Selective and Scientific	
	Books, New Delhi (2005).	

6	S. M. Khopkar, Environmental Pollution Analysis: Wiley	
	Eastern Ltd, New Delhi.	